Photonics Volume 2


Download Photonics Volume 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Photonics Volume 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Photonics, Volume 2


Photonics, Volume 2

Author: David L. Andrews

language: en

Publisher: John Wiley & Sons

Release Date: 2015-02-24


DOWNLOAD





Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Fundamentals of Photonics


Fundamentals of Photonics

Author: Bahaa E. A. Saleh

language: en

Publisher: John Wiley & Sons

Release Date: 2019-02-27


DOWNLOAD





Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.

Photonics


Photonics

Author: Ralf Menzel

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-18


DOWNLOAD





Since the invention of the laser in 1960 there has been an enormous increase in the number of applications of this newly available light and its spectacular properties, and there is no end to this development in sight. In many fields of science, technology and medicine laser photons are the driving force of progress. In the near future we will probably experience a further rapid de velopment in this field as a result of the widespread industrial production of semiconductor diode lasers and new nonlinear optical materials. Light from the new lasers may become even cheaper than that from light bulbs. Thus, laser optic devices will influence all sectors of private and public life. The high power, high brightness, narrow bandwidth, good coherence, spe cial polarization and/or short pulses of laser light beams enable new applica tions. Many of these processes will be based on nonlinear optical interactions of the laser light with suitable optical material. In these interactions the ma terial is modified by the incident light. The light is then in turn modified by the modified matter. Finally, the nonlinear modification of light as a function of other light becomes possible. Light is modified by light. To use laser light in this sense in science, technology and medicine, know ledge from different fields of physics, chemistry and engineering is necessary.