Permutation Methods

Download Permutation Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Permutation Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Permutation Methods

Author: Paul W. Mielke
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-07-29
Most commonly-used parametric and permutation statistical tests, such as the matched-pairs t test and analysis of variance, are based on non-metric squared distance functions that have very poor robustness characteristics. This second edition places increased emphasis on the use of alternative permutation statistical tests based on metric Euclidean distance functions that have excellent robustness characteristics. These alternative permutation techniques provide many powerful multivariate tests including multivariate multiple regression analyses. In addition to permutation techniques described in the first edition, this second edition also contains various new permutation statistical methods and studies that include resampling multiple contingency table analyses, analysis concerns involving log-linear models with small samples, an exact discrete analog of Fisher’s continuous method for combining P-values that arise from small data sets, multiple dichotomous response analyses, problems regarding Fisher’s Z transformation for correlation analyses, and multivariate similarity comparisons between corresponding multiple categories of two samples.
Permutation Statistical Methods

This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. lly-informed="" audience,="" and="" can="" also="" easily="" serve="" as="" textbook="" in="" graduate="" course="" departments="" such="" statistics,="" psychology,="" or="" biology.="" particular,="" the="" audience="" for="" book="" is="" teachers="" of="" practicing="" statisticians,="" applied="" quantitative="" students="" fields="" medical="" research,="" epidemiology,="" public="" health,="" biology.
Permutation Tests

Author: Phillip Good
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Permutation tests permit us to choose the test statistic best suited to the task at hand. This freedom of choice opens up a thousand practical applications, including many which are beyond the reach of conventional parametric sta tistics. Flexible, robust in the face of missing data and violations of assump tions, the permutation test is among the most powerful of statistical proce dures. Through sample size reduction, permutation tests can reduce the costs of experiments and surveys. This text on the application of permutation tests in biology, medicine, science, and engineering may be used as a step-by-step self-guiding reference manual by research workers and as an intermediate text for undergraduates and graduates in statistics and the applied sciences with a first course in statistics and probability under their belts. Research workers in the applied sciences are advised to read through Chapters 1 and 2 once quickly before proceeding to Chapters 3 through 8 which cover the principal applications they are likely to encounter in practice. Chapter 9 is a must for the practitioner, with advice for coping with real life emergencies such as missing or censored data, after-the-fact covariates, and outliers. Chapter 10 uses practical applications in archeology, biology, climatology, education and social science to show the research worker how to develop new permutation statistics to meet the needs of specific applications. The practitioner will find Chapter 10 a source of inspiration as well as a practical guide to the development of new and novel statistics.