Partial Least Squares Path Modeling


Download Partial Least Squares Path Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Partial Least Squares Path Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Partial Least Squares Path Modeling


Partial Least Squares Path Modeling

Author: Hengky Latan

language: en

Publisher: Springer

Release Date: 2017-11-03


DOWNLOAD





This edited book presents the recent developments in partial least squares-path modeling (PLS-PM) and provides a comprehensive overview of the current state of the most advanced research related to PLS-PM. The first section of this book emphasizes the basic concepts and extensions of the PLS-PM method. The second section discusses the methodological issues that are the focus of the recent development of the PLS-PM method. The third part discusses the real world application of the PLS-PM method in various disciplines. The contributions from expert authors in the field of PLS focus on topics such as the factor-based PLS-PM, the perfect match between a model and a mode, quantile composite-based path modeling (QC-PM), ordinal consistent partial least squares (OrdPLSc), non-symmetrical composite-based path modeling (NSCPM), modern view for mediation analysis in PLS-PM, a multi-method approach for identifying and treating unobserved heterogeneity, multigroup analysis (PLS-MGA), the assessment of the common method bias, non-metric PLS with categorical indicators, evaluation of the efficiency and accuracy of model misspecification and bootstrap parameter recovery in PLS-PM, CB-SEM, and the Bollen-Stine methods and importance-performance map analysis (IPMA) for nonlinear relationships. This book will be useful for researchers and practitioners interested in the latest advances in PLS-PM as well as master and Ph.D. students in a variety of disciplines using the PLS-PM method for their projects.

Latent Variable Path Modeling with Partial Least Squares


Latent Variable Path Modeling with Partial Least Squares

Author: Jan-Bernd Lohmöller

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-11


DOWNLOAD





Partial Least Squares (PLS) is an estimation method and an algorithm for latent variable path (LVP) models. PLS is a component technique and estimates the latent variables as weighted aggregates. The implications of this choice are considered and compared to covariance structure techniques like LISREL, COSAN and EQS. The properties of special cases of PLS (regression, factor scores, structural equations, principal components, canonical correlation, hierarchical components, correspondence analysis, three-mode path and component analysis) are examined step by step and contribute to the understanding of the general PLS technique. The proof of the convergence of the PLS algorithm is extended beyond two-block models. Some 10 computer programs and 100 applications of PLS are referenced. The book gives the statistical underpinning for the computer programs PLS 1.8, which is in use in some 100 university computer centers, and for PLS/PC. It is intended to be the background reference for the users of PLS 1.8, not as textbook or program manual.

Handbook of Partial Least Squares


Handbook of Partial Least Squares

Author: Vincenzo Esposito Vinzi

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-03-10


DOWNLOAD





This handbook provides a comprehensive overview of Partial Least Squares (PLS) methods with specific reference to their use in marketing and with a discussion of the directions of current research and perspectives. It covers the broad area of PLS methods, from regression to structural equation modeling applications, software and interpretation of results. The handbook serves both as an introduction for those without prior knowledge of PLS and as a comprehensive reference for researchers and practitioners interested in the most recent advances in PLS methodology.