P Adic Analytic Functions

Download P Adic Analytic Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get P Adic Analytic Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
P-adic Analytic Functions

P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field.Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions—in the whole field or inside an open disk—is a Bezout ring is also examined.
A Course in p-adic Analysis

Author: Alain M. Robert
language: en
Publisher: Springer Science & Business Media
Release Date: 2000-05-31
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
Analytic Elements in P-adic Analysis

This is probably the first book dedicated to this topic. The behaviour of the analytic elements on an infraconnected set D in K an algebraically closed complete ultrametric field is mainly explained by the circular filters and the monotonous filters on D, especially the T-filters: zeros of the elements, Mittag-Leffler series, factorization, Motzkin factorization, maximum principle, injectivity, algebraic properties of the algebra of the analytic elements on D, problems of analytic extension, factorization into meromorphic products and connections with Mittag-Leffler series. This is applied to the differential equation y'=hy (y, h analytic elements on D), analytic interpolation, injectivity, and to the p-adic Fourier transform.