Analytic Elements In P Adic Analysis

Download Analytic Elements In P Adic Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytic Elements In P Adic Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analytic Elements In P-adic Analysis

This is probably the first book dedicated to this topic. The behaviour of the analytic elements on an infraconnected set D in K an algebraically closed complete ultrametric field is mainly explained by the circular filters and the monotonous filters on D, especially the T-filters: zeros of the elements, Mittag-Leffler series, factorization, Motzkin factorization, maximum principle, injectivity, algebraic properties of the algebra of the analytic elements on D, problems of analytic extension, factorization into meromorphic products and connections with Mittag-Leffler series. This is applied to the differential equation y'=hy (y,h analytic elements on D), analytic interpolation, injectivity, and to the p-adic Fourier transform.
A Course in p-adic Analysis

Author: Alain M. Robert
language: en
Publisher: Springer Science & Business Media
Release Date: 2000-05-31
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
A Course in p-adic Analysis

Author: Alain M. Robert
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.