Oscillator Representation In Quantum Physics

Download Oscillator Representation In Quantum Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Oscillator Representation In Quantum Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Oscillator Representation in Quantum Physics

Author: M. Dineykhan
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-12-16
The investigation ofmost problems of quantum physics leads to the solution of the Schrodinger equation with an appropriate interaction Hamiltonian or potential. However, the exact solutions are known for rather a restricted set of potentials, so that the standard eternal problem that faces us is to find the best effective approximation to the exact solution of the Schrodinger equation under consideration. In the most general form, this problem can be formulated as follows. Let a total Hamiltonian H describing a relativistic (quantum field theory) or a nonrelativistic (quantum mechanics) system be given. Our problem is to solve the Schrodinger equation Hlft = Enlftn, n i. e. , to find the energy spectrum {En} and the proper wave functions {lft } n including the'ground state or vacuum lft = 10). The main idea of any ap o proximation technique is to find a decomposition in such a way that Ha describes our physical system in the "closest to H" manner, and the Schrodinger equation HolJt. (O) = E(O)lJt. (O) n n n can be solved exactly. The interaction Hamiltonian HI is supposed to give small corrections to the zero approximation which can be calculated. In this book, we shall consider the problem of a strong coupling regime in quantum field theory, calculations ofpath or functional integrals over the Gaussian measure and spectral problems in quantum mechanics. Let us con sider these problems briefly.
Translation Group and Particle Representations in Quantum Field Theory

Author: Hans-Jürgen Borchers
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-11-30
At the time I learned quantum field theory it was considered a folk theo rem that it is easy to construct field theories fulfilling either the locality or the spectrum condition. The construction of an example for the latter case is particularly easy. Take for instance an irreducible representation of the Poincare group with positive energy, and as an algebra of observables all compact operators in that representation space. This algebra of observables is even an asymptotically Abelian algebra. Since it has only a single repre sentation - except for multiples of this one - it is hardly possible to replace locality in order to obtain a theory with a reasonable physical structure. This example shows that it is not sufficient to replace locality by asymptotic Abelian-ness. The construction of a theory fulfilling locality without a pos itive energy representation was first done by Doplicher, Regge, and Singer [DRS]. However, modern investigations on the locality ideal in the algebra oftest functions, started by Alcantara and Yngvason [AY], seem to indicate that this is a general feature; this means that most of the algebras of ob servables fulfilling the locality condition will not have representations that also fulfil the spectrum condition. This discussion shows that quantum field theory becomes a subject of interest only if both conditions are satisfied at the same time.
Noncommutative Structures in Mathematics and Physics

Author: S. Duplij
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.