Controle D Execution Des Mouvements D Un Robot Mobile

Download Controle D Execution Des Mouvements D Un Robot Mobile PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Controle D Execution Des Mouvements D Un Robot Mobile book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Robotics: 1989

Author: Kenneth J. Waldron
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The Fourth International Conference on Advanced Robotics was held in Columbus, Ohio, U. S. A. on June 13th to 15th, 1989. The first two conferences in this series were held in Tokyo. The third was held in Versailles, France in October 1987. The International Conference on Advanced Robotics is affiliated with the International Federation of Robotics. This conference was sponsored by The Ohio State University. The American Society of Mechanical Engineers was a cooperating co-sponsor. The objective of the International Conference on Advanced Robotics is to provide an international exchange of information on the topic of advanced robotics. This was adopted as one of the themes for international research cooperation at a meeting of representatives of seven industrialized countries held in Williamsburg, U. S. A. in May 1983. The present conference is truly international in character with contributions from authors of twelve countries. (Bulgaria, Canada, France, Great Britain, India, Italy, Japan, Peoples Republic of China, Poland, Republic of China, Spain, United States of America.) The subject matter of the papers is equally diverse, covering most technical areas of robotics. The authors are distinguished. They are leaders in the field in their respective countries. The International Conference on Advanced Robotics has always particularly encouraged papers oriented to the design of robotic systems, or to research directed at advanced applications in service robotics, construction, nuclear power, agriculture, mining, underwater systems, and space systems.
Machine Intelligence and Knowledge Engineering for Robotic Applications

Author: Andrew K.C. Wong
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book is the outcome of the NATO Advanced Research Workshop on Machine Intelligence and Knowledge Engineering for Robotic Applications held at Maratea, Italy in May 1986. Attendance of the workshop was by invitation only. Most of the participants and speakers are recognized leaders in the field, representing industry, government and academic c0mrnunity worldwide. The focus of the workshop was to review the recent advances of machine intelligence and knowledge engineering for robotic appli cations. It covers five main areas of interest. They are grouped into five sections: 1. Robot Vision 2. Knowledge Representation and Image Understanding 3. Robot Control and Inference Systems 4. Task Planning and Expert Systems 5. Software/Hardware Systems Also included in this book are a paper from the Poster Session and a brief report of the panel discussion on the Future Direction in Knowledge-Based Robotics. Section I of this book consists of four papers. It begins with a review of the basic concepts of computer vision, with emphasis on techniques specific for robot vision systems. The next paper pre sents a comprehensive 3-D vision system for robotic application.
Advances in Plan-Based Control of Robotic Agents

In recent years, autonomous robots, including Xavier, Martha [1], Rhino [2,3], Minerva,and Remote Agent, have shown impressive performance in long-term demonstrations. In NASA’s Deep Space program, for example, an - tonomous spacecraft controller, called the Remote Agent [5], has autonomously performed a scienti?c experiment in space. At Carnegie Mellon University, Xavier [6], another autonomous mobile robot, navigated through an o?ce - vironment for more than a year, allowing people to issue navigation commands and monitor their execution via the Internet. In 1998, Minerva [7] acted for 13 days as a museum tourguide in the Smithsonian Museum, and led several thousand people through an exhibition. These autonomous robots have in common that they rely on plan-based c- trol in order to achieve better problem-solving competence. In the plan-based approach, robots generate control actions by maintaining and executing a plan that is e?ective and has a high expected utility with respect to the robots’ c- rent goals and beliefs. Plans are robot control programs that a robot can not only execute but also reason about and manipulate [4]. Thus, a plan-based c- troller is able to manage and adapt the robot’s intended course of action — the plan — while executing it and can thereby better achieve complex and changing tasks.