Optimal Stopping Rules

Download Optimal Stopping Rules PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Stopping Rules book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optimal Stopping Rules

Author: Albert N. Shiryaev
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-09-23
Although three decades have passed since the first publication of this book, it is reprinted now as a result of popular demand. The content remains up-to-date and interesting for many researchers as is shown by the many references to it in current publications. The author is one of the leading experts of the field and gives an authoritative treatment of a subject.
Random Walk, Brownian Motion, and Martingales

This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.