Numerical Linear Algebra Digital Signal Processing And Parallel Algorithms

Download Numerical Linear Algebra Digital Signal Processing And Parallel Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Linear Algebra Digital Signal Processing And Parallel Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms

Author: Gene H. Golub
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Numerical linear algebra, digital signal processing, and parallel algorithms are three disciplines with a great deal of activity in the last few years. The interaction between them has been growing to a level that merits an Advanced Study Institute dedicated to the three areas together. This volume gives an account of the main results in this interdisciplinary field. The following topics emerged as major themes of the meeting: - Singular value and eigenvalue decompositions, including applications, - Toeplitz matrices, including special algorithms and architectures, - Recursive least squares in linear algebra, digital signal processing and control, - Updating and downdating techniques in linear algebra and signal processing, - Stability and sensitivity analysis of special recursive least squares problems, - Special architectures for linear algebra and signal processing. This book contains tutorials on these topics given by leading scientists in each of the three areas. A consider- able number of new research results are presented in contributed papers. The tutorials and papers will be of value to anyone interested in the three disciplines.
Advanced Linear Algebra

Author: Steven Roman
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-09-20
For the third edition, the author has added a new chapter on associative algebras that includes the well known characterizations of the finite-dimensional division algebras over the real field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem); polished and refined some arguments (such as the discussion of reflexivity, the rational canonical form, best approximations and the definitions of tensor products); upgraded some proofs that were originally done only for finite-dimensional/rank cases; added new theorems, including the spectral mapping theorem; corrected all known errors; the reference section has been enlarged considerably, with over a hundred references to books on linear algebra. From the reviews of the second edition: “In this 2nd edition, the author has rewritten the entire book and has added more than 100 pages of new materials. ... As in the previous edition, the text is well written and gives a thorough discussion of many topics of linear algebra and related fields. ... the exercises are rewritten and expanded. ... Overall, I found the book a very useful one. ... It is a suitable choice as a graduate text or as a reference book.” Ali-Akbar Jafarian, ZentralblattMATH “This is a formidable volume, a compendium of linear algebra theory, classical and modern ... . The development of the subject is elegant ... . The proofs are neat ... . The exercise sets are good, with occasional hints given for the solution of trickier problems. ... It represents linear algebra and does so comprehensively.” Henry Ricardo, MathDL