Numerical Continuation And Bifurcation In Nonlinear Pdes

Download Numerical Continuation And Bifurcation In Nonlinear Pdes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Continuation And Bifurcation In Nonlinear Pdes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Continuation and Bifurcation in Nonlinear PDEs

This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Numerical Continuation and Bifurcation in Nonlinear PDEs

"This book presents a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs"--
Nonlinear PDEs

Author: Guido Schneider
language: en
Publisher: American Mathematical Soc.
Release Date: 2017-10-26
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.