Novel Ideas For Accelerators Particle Detection And Data Challenges At Future Colliders

Download Novel Ideas For Accelerators Particle Detection And Data Challenges At Future Colliders PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Novel Ideas For Accelerators Particle Detection And Data Challenges At Future Colliders book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Novel ideas for accelerators, particle detection and data challenges at future colliders

Author: Alessandro Tricoli
language: en
Publisher: Frontiers Media SA
Release Date: 2023-07-21
Exploring the Large Hadron Collider – The Discovery of the Higgs Particle

Michael Hauschild takes the reader of this essential back to the year 2012, when the discovery of the Higgs particle was announced at CERN, the European Organization for Nuclear Research near Geneva, Switzerland. The author vividly explains the Higgs mechanism for mass generation with the central role of the Higgs particle in current particle physics and the long hunt for its discovery at the Large Hadron Collider LHC. After a stop of more than two years, the LHC, the world‘s largest particle accelerator was put back into operation in spring 2015 to discover the secrets of nature at higher energy than ever before. An overview of future projects concludes this essential. The Author Dr. Michael Hauschild is a particle physicist at CERN in Geneva and has been a member of the ATLAS experiment at the Large Hadron Collider LHC since 2005. During the first long measurement period of the LHC from 2010 to 2012, he witnessed the discovery of the Higgs particle in summer 2012. This Springer essential is a translation of the original German 1st edition essentials, Neustart des LHC: die Entdeckung des Higgs-Teilchens by Michael Hauschild, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically different from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Future Of The Large Hadron Collider, The: A Super-accelerator With Multiple Possible Lives

The Large Hadron Collider (LHC) is the highest energy collider ever built. It resides near Geneva in a tunnel 3.8m wide, with a circumference of 26.7km, which was excavated in 1983-1988 to initially house the electron-positron collider LEP. The LHC was approved in 1995, and it took until 2010 for reliable operation. By now, a larger set of larger integrated luminosities have been accumulated for physics analyses in the four collider experiments: ATLAS, CMS, LHCb and ALICE.The LHC operates with an extended cryogenic plant, using a multi-stage injection system comprising the PS and SPS accelerators (still in use for particle physics experiments at lower energies). The beams are guided by 1232 superconducting high field dipole magnets.Intense works are underway in preparation of the High Luminosity LHC, aimed at upgrading the LHC and detectors for collecting ten times more luminosity, and extending the collider life to the early 2040's. So far, the (HL-)LHC project represents a cumulation of around one hundred thousand person-years of innovative work by technicians, engineers, and physicists from all over the world; probably the largest scientific effort ever in the history of humanity. The book is driven by the realisation of the unique value of this accelerator complex and by the recognition of the status of high energy physics, described by a Standard Model — which still leaves too many questions unanswered to be the appropriate theory of elementary particles and their interactions.Following the Introduction are: three chapters which focus on the initial decade of operation, leading to the celebrated discovery of the Higgs Boson, on the techniques and physics of the luminosity upgrade, and finally on major options - of using the LHC in a concurrent, power economic, electron-hadron scattering mode, when upgraded to higher energies or eventually as an injector for the next big machine. The various technical and physics chapters, provided by 61 authors, characterise the fascinating opportunities the LHC offers for the next two decades ahead (possibly longer), with the goal to substantially advance our understanding of nature.