Notes On Differential Equations

Download Notes On Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Notes On Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Notes on Diffy Qs

Annotation An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. The book originated as class notes for Math 286 at the University of Illinois at Urbana-Champaign in the Fall 2008 and Spring 2009 semesters. It has since been successfully used in many university classrooms as the main textbook. See http: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Ordinary Differential Equations

Author: Morris Tenenbaum
language: en
Publisher: Courier Corporation
Release Date: 1985-10-01
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.