Nonlinear Waves And Inverse Scattering Transform


Download Nonlinear Waves And Inverse Scattering Transform PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Waves And Inverse Scattering Transform book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonlinear Ocean Waves and the Inverse Scattering Transform


Nonlinear Ocean Waves and the Inverse Scattering Transform

Author: Alfred Osborne

language: en

Publisher: Academic Press

Release Date: 2010-04-07


DOWNLOAD





For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. - Presents techniques and methods of the inverse scattering transform for data analysis - Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis - Suitable for classroom teaching as well as research

Nonlinear Waves And Inverse Scattering Transform


Nonlinear Waves And Inverse Scattering Transform

Author: Spencer P Kuo

language: en

Publisher: World Scientific

Release Date: 2023-06-26


DOWNLOAD





Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.

Solitons and the Inverse Scattering Transform


Solitons and the Inverse Scattering Transform

Author: Mark J. Ablowitz

language: en

Publisher: SIAM

Release Date: 1981-01-01


DOWNLOAD





A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localized pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation. For such exactly solvable problems, the inverse scattering transform provides the general solution of their initial value problems. It is equally surprising that some of these exactly solvable problems arise naturally as models of physical phenomena. Simply put, the inverse scattering transform is a nonlinear analog of the Fourier transform used for linear problems. Its value lies in the fact that it allows certain nonlinear problems to be treated by what are essentially linear methods. Chapters 1 and 2 of the book describe in detail the theory of the inverse scattering transform. Chapter 3 discusses alternate methods for these exactly solvable problems and the interconnections among them. Physical applications are described in Chapter 4, where, for example, similarities between deep water waves and nonlinear optics become evident. Because of the fundamental role of linear theory, there is an extensive appendix that addresses the linear problems and their solutions.