Nonlinear Ocean Waves And The Inverse Scattering Transform


Download Nonlinear Ocean Waves And The Inverse Scattering Transform PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Ocean Waves And The Inverse Scattering Transform book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonlinear Ocean Waves and the Inverse Scattering Transform


Nonlinear Ocean Waves and the Inverse Scattering Transform

Author: Alfred Osborne

language: en

Publisher: Academic Press

Release Date: 2010-04-07


DOWNLOAD





For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. - Presents techniques and methods of the inverse scattering transform for data analysis - Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis - Suitable for classroom teaching as well as research

Nonlinear Ocean Waves and the Inverse Scattering Transform


Nonlinear Ocean Waves and the Inverse Scattering Transform

Author: Alfred R. Osborne

language: en

Publisher:

Release Date: 2010


DOWNLOAD





For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. presents techniques and methods of the inverse scattering transform for data analysis geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis suitable for classroom teaching as well as research

Scattering, Two-Volume Set


Scattering, Two-Volume Set

Author: E. R. Pike

language: en

Publisher: Academic Press

Release Date: 2002


DOWNLOAD





Part 1: SCATTERING OF WAVES BY MACROSCOPIC TARGET -- Interdisciplinary aspects of wave scattering -- Acoustic scattering -- Acoustic scattering: approximate methods -- Electromagnetic wave scattering: theory -- Electromagnetic wave scattering: approximate and numerical methods -- Electromagnetic wave scattering: applications -- Elastodynamic wave scattering: theory -- Elastodynamic wave scattering: Applications -- Scattering in Oceans -- Part 2: SCATTERING IN MICROSCOPIC PHYSICS AND CHEMICAL PHYSICS -- Introduction to direct potential scattering -- Introduction to Inverse Potential Scattering -- Visible and Near-visible Light Scattering -- Practical Aspects of Visible and Near-visible Light Scattering -- Nonlinear Light Scattering -- Atomic and Molecular Scattering: Introduction to Scattering in Chemical -- X-ray Scattering -- Neutron Scattering -- Electron Diffraction and Scattering -- Part 3: SCATTERING IN NUCLEAR PHYSICS -- Nuclear Physics -- Part 4: PARTICLE SCATTERING -- State of the Art of Peturbative Methods -- Scattering Through Electro-weak Interactions (the Fermi Scale) -- Scattering Through Strong Interactions (the Hadronic or QCD Scale) -- Part 5: SCATTERING AT EXTREME PHYSICAL SCALES -- Scattering at Extreme Physical Scales -- Part 6: SCATTERING IN MATHEMATICS AND NON-PHYSICAL SCIENCES -- Relations with Other Mathematical Theories -- Inverse Scattering Transform and Non-linear Partial Differenttial Equations -- Scattering of Mathematical Objects.