Nonlinear Filters


Download Nonlinear Filters PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Filters book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonlinear Filters


Nonlinear Filters

Author: Hisashi Tanizaki

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.

Nonlinear Filters


Nonlinear Filters

Author: Hisashi Tanizaki

language: en

Publisher: Springer Science & Business Media

Release Date: 1996-08-16


DOWNLOAD





Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.

Nonlinear Digital Filters


Nonlinear Digital Filters

Author: Ioannis Pitas

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-14


DOWNLOAD





The function of a filter is to transform a signal into another one more suit able for a given purpose. As such, filters find applications in telecommunica tions, radar, sonar, remote sensing, geophysical signal processing, image pro cessing, and computer vision. Numerous authors have considered deterministic and statistical approaches for the study of passive, active, digital, multidimen sional, and adaptive filters. Most of the filters considered were linear although the theory of nonlinear filters is developing rapidly, as it is evident by the numerous research papers and a few specialized monographs now available. Our research interests in this area created opportunity for cooperation and co authored publications during the past few years in many nonlinear filter families described in this book. As a result of this cooperation and a visit from John Pitas on a research leave at the University of Toronto in September 1988, the idea for this book was first conceived. The difficulty in writing such a mono graph was that the area seemed fragmented and no general theory was available to encompass the many different kinds of filters presented in the literature. However, the similarities of some families of nonlinear filters and the need for such a monograph providing a broad overview of the whole area made the pro ject worthwhile. The result is the book now in your hands, typeset at the Department of Electrical Engineering of the University of Toronto during the summer of 1989.