New Physical Problems In Electronic Materials


Download New Physical Problems In Electronic Materials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Physical Problems In Electronic Materials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

New Physical Problems In Electronic Materials - Proceedings Of The 6th Iscmp


New Physical Problems In Electronic Materials - Proceedings Of The 6th Iscmp

Author: M Borissov

language: en

Publisher: #N/A

Release Date: 1991-03-22


DOWNLOAD





This proceedings feature lectures and contributions identifying and exploring major new trends in contemporary materials science, in particular electronic and optoelectronic materials. Various aspects of the preparative technology, characterisation techniques, physical and physicochemical properties and device applications of new electronic and optoelectronic materials (amorphous, polycrystalline, crystalline semiconductors, magnetic media, high Tc superconductors, polymeric thin films, ferroelectrics, etc.) are treated via in depth reviews.

Reliability and Failure of Electronic Materials and Devices


Reliability and Failure of Electronic Materials and Devices

Author: Milton Ohring

language: en

Publisher: Academic Press

Release Date: 2014-10-14


DOWNLOAD





Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Electronic Materials


Electronic Materials

Author: Yuriy M. Poplavko

language: en

Publisher: Elsevier

Release Date: 2018-11-23


DOWNLOAD





Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science. Provides important overview of the fundamentals of electronic materials properties significant for device applications along with advanced and applied concepts essential to those working in the field of electronics Takes a simplified and mathematical approach to theories essential to the understanding of electronic materials and summarizes important takeaways at the end of each chapter Interweaves modern experimental data and research in topics such as nanophysics, nanomaterials and dielectrics