Neural Systems For Robotics


Download Neural Systems For Robotics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Systems For Robotics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Neural Systems for Robotics


Neural Systems for Robotics

Author: Omid Omidvar

language: en

Publisher: Elsevier

Release Date: 2012-12-02


DOWNLOAD





Neural Systems for Robotics represents the most up-to-date developments in the rapidly growing aplication area of neural networks, which is one of the hottest application areas for neural networks technology. The book not only contains a comprehensive study of neurocontrollers in complex Robotics systems, written by highly respected researchers in the field but outlines a novel approach to solving Robotics problems. The importance of neural networks in all aspects of Robot arm manipulators, neurocontrol, and Robotic systems is also given thorough and in-depth coverage. All researchers and students dealing with Robotics will find Neural Systems for Robotics of immense interest and assistance. Focuses on the use of neural networks in robotics-one of the hottest application areas for neural networks technology Represents the most up-to-date developments in this rapidly growing application area of neural networks Contains a new and novel approach to solving Robotics problems

Deep Learning for Robot Perception and Cognition


Deep Learning for Robot Perception and Cognition

Author: Alexandros Iosifidis

language: en

Publisher: Academic Press

Release Date: 2022-02-04


DOWNLOAD





Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Neural Network Control Of Robot Manipulators And Non-Linear Systems


Neural Network Control Of Robot Manipulators And Non-Linear Systems

Author: F W Lewis

language: en

Publisher: CRC Press

Release Date: 1998-11-30


DOWNLOAD





There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.