Neural Network Control Of Robot Manipulators And Non Linear Systems

Download Neural Network Control Of Robot Manipulators And Non Linear Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Network Control Of Robot Manipulators And Non Linear Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Neural Network Control Of Robot Manipulators And Non-Linear Systems

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.
Neural Network Control Of Robot Manipulators And Non-Linear Systems

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.
Neural Network-Based State Estimation of Nonlinear Systems

"Neural Network-Based State Estimation of Nonlinear Systems" presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises.