Network Embedding

Download Network Embedding PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Network Embedding book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Network Embedding

heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
QoS-Aware Virtual Network Embedding

As an important future network architecture, virtual network architecture has received extensive attention. Virtual network embedding (VNE) is one of the core services of network virtualization (NV). It provides solutions for various network applications from the perspective of virtual network resource allocation. The Internet aims to provide global users with comprehensive coverage. The network function requests of hundreds of millions of end users have brought great pressure to the underlying network architecture. VNE algorithm can provide effective support for the reasonable and efficient allocation of network resources, so as to alleviate the pressure off the Internet. At present, a distinctive feature of the Internet environment is that the quality of service (QoS) requirements of users are differentiated. Different regions, different times, and different users have different network function requirements. Therefore, network resources need to be reasonably allocated according to users' QoS requirements to avoid the waste of network resources. In this book, based on the analysis of the principle of VNE algorithm, we provide a VNE scheme for users with differentiated QoS requirements. We summarize the common user requirements into four categories: security awareness, service awareness, energy awareness, and load balance, and then introduce the specific implementation methods of various differentiated QoS algorithms. This book provides a variety of VNE solutions, including VNE algorithms for single physical domain, VNE algorithms for across multiple physical domains, VNE algorithms based on heuristic method, and VNE algorithms based on machine learning method.
Network Bioscience, 2nd Edition

Author: Marco Pellegrini
language: en
Publisher: Frontiers Media SA
Release Date: 2020-03-27
Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.