Natural Language Processing For Historical Texts

Download Natural Language Processing For Historical Texts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Natural Language Processing For Historical Texts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Natural Language Processing for Historical Texts

Author: Michael Piotrowski
language: en
Publisher: Springer Nature
Release Date: 2022-05-31
More and more historical texts are becoming available in digital form. Digitization of paper documents is motivated by the aim of preserving cultural heritage and making it more accessible, both to laypeople and scholars. As digital images cannot be searched for text, digitization projects increasingly strive to create digital text, which can be searched and otherwise automatically processed, in addition to facsimiles. Indeed, the emerging field of digital humanities heavily relies on the availability of digital text for its studies. Together with the increasing availability of historical texts in digital form, there is a growing interest in applying natural language processing (NLP) methods and tools to historical texts. However, the specific linguistic properties of historical texts -- the lack of standardized orthography, in particular -- pose special challenges for NLP. This book aims to give an introduction to NLP for historical texts and an overview of the state of the art in this field. The book starts with an overview of methods for the acquisition of historical texts (scanning and OCR), discusses text encoding and annotation schemes, and presents examples of corpora of historical texts in a variety of languages. The book then discusses specific methods, such as creating part-of-speech taggers for historical languages or handling spelling variation. A final chapter analyzes the relationship between NLP and the digital humanities. Certain recently emerging textual genres, such as SMS, social media, and chat messages, or newsgroup and forum postings share a number of properties with historical texts, for example, nonstandard orthography and grammar, and profuse use of abbreviations. The methods and techniques required for the effective processing of historical texts are thus also of interest for research in other domains. Table of Contents: Introduction / NLP and Digital Humanities / Spelling in Historical Texts / Acquiring Historical Texts / Text Encoding and Annotation Schemes / Handling Spelling Variation / NLP Tools for Historical Languages / Historical Corpora / Conclusion / Bibliography
Speech and Language Processing

This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing.
Natural Language Processing and Text Mining

Author: Anne Kao
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-03-06
The topic this book addresses originated from a panel discussion at the 2004 ACM SIGKDD (Special Interest Group on Knowledge Discovery and Data Mining) Conference held in Seattle, Washington, USA. We the editors or- nized the panel to promote discussion on how text mining and natural l- guageprocessing,tworelatedtopicsoriginatingfromverydi?erentdisciplines, can best interact with each other, and bene?t from each other’s strengths. It attracted a great deal of interest and was attended by 200 people from all over the world. We then guest-edited a special issue of ACM SIGKDD Exp- rations on the same topic, with a number of very interesting papers. At the same time, Springer believed this to be a topic of wide interest and expressed an interest in seeing a book published. After a year of work, we have put - gether 11 papers from international researchers on a range of techniques and applications. We hope this book includes papers readers do not normally ?nd in c- ference proceedings, which tend to focus more on theoretical or algorithmic breakthroughs but are often only tried on standard test data. We would like to provide readers with a wider range of applications, give some examples of the practical application of algorithms on real-world problems, as well as share a number of useful techniques.