Nanodust In The Solar System Discoveries And Interpretations


Download Nanodust In The Solar System Discoveries And Interpretations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nanodust In The Solar System Discoveries And Interpretations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nanodust in the Solar System: Discoveries and Interpretations


Nanodust in the Solar System: Discoveries and Interpretations

Author: Ingrid Mann

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-05-30


DOWNLOAD





Nanodust and nanometer-sized structures are important components of many objects in space. Nanodust is observed in evolved stars, young stellar objects, protoplanetary disks, and dust debris disks. Within the solar system, nanodust is observed with in-situ experiments from spacecraft. Nanometer-sized substructures are found in the collected cometary and interplanetary dust particles and in meteorites. Understanding the growth and destruction of dust, its internal evolution, as well as the optical properties and the detection of nanoparticles is of fundamental importance for astrophysical research. This book provides a focused description of the current state of research and experimental results concerning nanodust in the solar system. It addresses three major questions: What is nanodust? How was it discovered in the solar system? And how do we interpret the observations? The book serves as a self-contained reference work for space researchers and provides solid information on nanodust in cosmic environments for researchers working in astrophysics or in other fields of physics.

Scattering of Particles and Radiation in Astrophysical Environments


Scattering of Particles and Radiation in Astrophysical Environments

Author: Nicholas R. Lewkow

language: en

Publisher: Springer

Release Date: 2015-11-24


DOWNLOAD





This thesis considers the non-equilibrium and energy transfer processes involved in the evolution of astrophysical gases and plasmas. Momentum-energy transfer in collisions of atoms, molecules and ions governs the evolution of interacting astrophysical gas and plasmas. These collisions require an accurate quantum mechanical description and the work presented here develops a unified kinetic and quantum-mechanical model for this consideration. The multi-scale computational approach implemented here takes into account non-thermal distributions of atomic particles and clarifies their role in the evolution of interstellar gas and planetary atmospheres. As shown, the physical parameters of non-thermal distributions strongly depend on the differential cross sections of atomic, molecular and ion collisions. Readers will find a detailed description of the energy relaxation of energetic atoms, produced in the interstellar gas by the solar and stellar wind plasmas. Computation of the non-thermal diffuse background of energetic helium atoms in the heliosphere is also included for evaluation of the contributions from local and cosmic sources and analysis of related satellite observations. Work involving modeling of energetic particle precipitation into planetary atmospheres and formation of the planetary and exoplanetary escape fluxes has been performed with very accurate cross sections, describing momentum-energy transfer processes with high precision. Results of the Monte Carlo simulations, carried out for the Mars atmosphere at different solar conditions, can be used for analysis of observational data for Mars atmospheric escape and investigation into the history of Martian water.

New Perspectives on Mineral Nucleation and Growth


New Perspectives on Mineral Nucleation and Growth

Author: Alexander E.S. Van Driessche

language: en

Publisher: Springer

Release Date: 2016-12-20


DOWNLOAD





In the last decade, numerous studies have demonstrated the existence of alternative pathways to nucleation and crystallisation that oppose the classical view. Such proposed scenarios include multistage reactions proceeding via various precursor species and/or intermediate phases. The aim of this book is to review and discuss these recent advances in our understanding of the early stages of mineralisation through a series of contributions that address both experimental and theoretical studies about the formation and nature of initial precursor species (e.g., prenucleation clusters, dense liquid phases, amorphous nanoparticles, etc.) as well as their transformations leading to the stable mineral phase. Several chapters are devoted to cutting-edge analytical techniques used for investigating the above processes in situ, in real time and at conditions relevant to both natural and industrial processes. At the end of the book, the editors summarize the key questions that still need to be addressed in order to establish a complete picture of the nucleation and growth processes involved during the formation of minerals