Scattering Of Particles And Radiation In Astrophysical Environments


Download Scattering Of Particles And Radiation In Astrophysical Environments PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scattering Of Particles And Radiation In Astrophysical Environments book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Scattering of Particles and Radiation in Astrophysical Environments


Scattering of Particles and Radiation in Astrophysical Environments

Author: Nicholas R. Lewkow

language: en

Publisher: Springer

Release Date: 2015-11-24


DOWNLOAD





This thesis considers the non-equilibrium and energy transfer processes involved in the evolution of astrophysical gases and plasmas. Momentum-energy transfer in collisions of atoms, molecules and ions governs the evolution of interacting astrophysical gas and plasmas. These collisions require an accurate quantum mechanical description and the work presented here develops a unified kinetic and quantum-mechanical model for this consideration. The multi-scale computational approach implemented here takes into account non-thermal distributions of atomic particles and clarifies their role in the evolution of interstellar gas and planetary atmospheres. As shown, the physical parameters of non-thermal distributions strongly depend on the differential cross sections of atomic, molecular and ion collisions. Readers will find a detailed description of the energy relaxation of energetic atoms, produced in the interstellar gas by the solar and stellar wind plasmas. Computation of the non-thermal diffuse background of energetic helium atoms in the heliosphere is also included for evaluation of the contributions from local and cosmic sources and analysis of related satellite observations. Work involving modeling of energetic particle precipitation into planetary atmospheres and formation of the planetary and exoplanetary escape fluxes has been performed with very accurate cross sections, describing momentum-energy transfer processes with high precision. Results of the Monte Carlo simulations, carried out for the Mars atmosphere at different solar conditions, can be used for analysis of observational data for Mars atmospheric escape and investigation into the history of Martian water.

Particle Cosmology and Astrophysics


Particle Cosmology and Astrophysics

Author: Dan Hooper

language: en

Publisher: Princeton University Press

Release Date: 2024-05-14


DOWNLOAD





A graduate-level introduction to the interface between particle physics, astrophysics, and cosmology This book explores the exciting interface between the fields of cosmology, high-energy astrophysics, and particle physics, at a level suitable for advanced undergraduate- to graduate-level students as well as active researchers. Without assuming a strong background in particle physics or quantum field theory, the text is designed to be accessible to readers from a range of backgrounds and presents both fundamentals and modern topics in a modular style that allows for flexible use and easy reference. It offers coverage of general relativity and the Friedmann equations, early universe thermodynamics, recombination and the cosmic microwave background, Big Bang nucleosynthesis, the origin and detection of dark matter, the formation of large-scale structure, baryogenesis and leptogenesis, inflation, dark energy, cosmic rays, neutrino and gamma-ray astrophysics, supersymmetry, Grand Unified Theories, sterile neutrinos, and axions. The book also includes numerous worked examples and homework problems, many with solutions. Particle Cosmology and Astrophysics provides readers with an invaluable entrée to this cross-disciplinary area of research and discovery. Accessible to advanced undergraduate to graduate students, as well as researchers in cosmology, high-energy astrophysics, and particle physics Does not assume a strong background in particle physics or quantum field theory and contains two chapters specifically for readers with no background in particle physics Broad scope, covering many topics across particle physics, astrophysics, and particle cosmology Modular presentation for easy reference and flexible use Provides more than 200 homework problems, many with solutions Ideal for course use or self-study and reference

Astrophysical Sources of High Energy Particles and Radiation


Astrophysical Sources of High Energy Particles and Radiation

Author: Tomasz Bulik

language: en

Publisher: American Institute of Physics

Release Date: 2005-12-06


DOWNLOAD





The main purpose of this conference was to present an overview of the current state of research in the area of high energy astrophysics. In particular, the mechanisms of particle acceleration, generation of high energy radiation, and polarization properties of such emission were discussed. A broad range of compact and diffuse sources, ranging from stellar to extragalactic objects are covered.