Multiple Zeta Functions Multiple Polylogarithms And Their Special Values

Download Multiple Zeta Functions Multiple Polylogarithms And Their Special Values PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiple Zeta Functions Multiple Polylogarithms And Their Special Values book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values

This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.
The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell–Tornheim multiple zeta-functions, and Euler–Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten’s volume formula is provided. It is shown that various relations among special values of Euler–Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier’s conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.
Analytic Methods In Number Theory: When Complex Numbers Count

There is no surprise that arithmetic properties of integral ('whole') numbers are controlled by analytic functions of complex variable. At the same time, the values of analytic functions themselves happen to be interesting numbers, for which we often seek explicit expressions in terms of other 'better known' numbers or try to prove that no such exist. This natural symbiosis of number theory and analysis is centuries old but keeps enjoying new results, ideas and methods.The present book takes a semi-systematic review of analytic achievements in number theory ranging from classical themes about primes, continued fractions, transcendence of π and resolution of Hilbert's seventh problem to some recent developments on the irrationality of the values of Riemann's zeta function, sizes of non-cyclotomic algebraic integers and applications of hypergeometric functions to integer congruences.Our principal goal is to present a variety of different analytic techniques that are used in number theory, at a reasonably accessible — almost popular — level, so that the materials from this book can suit for teaching a graduate course on the topic or for a self-study. Exercises included are of varying difficulty and of varying distribution within the book (some chapters get more than other); they not only help the reader to consolidate their understanding of the material but also suggest directions for further study and investigation. Furthermore, the end of each chapter features brief notes about relevant developments of the themes discussed.