The Theory Of Zeta Functions Of Root Systems

Download The Theory Of Zeta Functions Of Root Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Theory Of Zeta Functions Of Root Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell–Tornheim multiple zeta-functions, and Euler–Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten’s volume formula is provided. It is shown that various relations among special values of Euler–Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier’s conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.
The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell–Tornheim multiple zeta-functions, and Euler–Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten’s volume formula is provided. It is shown that various relations among special values of Euler–Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier’s conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.
Number Theory: Dreaming In Dreams - Proceedings Of The 5th China-japan Seminar

Author: Shigeru Kanemitsu
language: en
Publisher: World Scientific
Release Date: 2009-11-26
This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory.Kitaoka's paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning's paper introduces a new direction of research on analytic number theory — quantitative theory of some surfaces and Bruedern et al's paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms — Kohnen's paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu's paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al's paper gives a very thorough survey on functional relations of root system zeta-functions, Hoshi-Miyake's paper is a continuation of Miyake's long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia's paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura's paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers.Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students.