Multiblock Grid Generation

Download Multiblock Grid Generation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiblock Grid Generation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multiblock Grid Generation

Author: Nigel P. Weatherill
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'.
Handbook of Grid Generation

Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.
Grid Generation Methods

Author: Vladimir D. Liseikin
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-18
Grid generation codes represent an indispensable tool for solving field prob lems in nearly all areas of applied mathematics. The use of these grid codes significantly enhances the productivity and reliability of the numerical analy sis of problems with complex geometry and complicated solutions. The science of grid generation is rather young and is still growing fast; new developments are continually occurring in the fields of grid methods, codes, and practical applications. Therefore there exists an evident need of students, researchers, and practitioners in applied mathematics for new books which coherently complement the existing ones with a description of new developments in grid methods, grid codes, and the concomitant areas of grid technology. The objective of this book is to give a clear, comprehensive, and easily learned description of all essential methods of grid generation technology for two major classes of grids: structured and unstructured. These classes rely on two somewhat opposite basic concepts. The basic concept of the former class is adherence to order and organization, while the latter is based on the absence of any restrictions. The present monograph discusses the current state of the art in methods of grid generation and describes new directions and new techniques aimed at the enhancement of the efficiency and productivity of the grid process. The emphasis is put on mathematical formulations, explanations, and examples of various aspects of grid generation.