Multi Modal Data Fusion Based On Embeddings


Download Multi Modal Data Fusion Based On Embeddings PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Modal Data Fusion Based On Embeddings book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Multi-modal Data Fusion based on Embeddings


Multi-modal Data Fusion based on Embeddings

Author: S. Thoma

language: en

Publisher: IOS Press

Release Date: 2019-11-06


DOWNLOAD





Many web pages include structured data in the form of semantic markup, which can be transferred to the Resource Description Framework (RDF) or provide an interface to retrieve RDF data directly. This RDF data enables machines to automatically process and use the data. When applications need data from more than one source the data has to be integrated, and the automation of this can be challenging. Usually, vocabularies are used to concisely describe the data, but because of the decentralized nature of the web, multiple data sources can provide similar information with different vocabularies, making integration more difficult. This book, Multi-modal Data Fusion based on Embeddings, describes how similar statements about entities can be identified across sources, independent of the vocabulary and data modeling choices. Previous approaches have relied on clean and extensively modeled ontologies for the alignment of statements, but the often noisy data in a web context does not necessarily adhere to these prerequisites. In this book, the use of RDF label information of entities is proposed to tackle this problem. In combination with embeddings, the use of label information allows for a better integration of noisy data, something that has been empirically confirmed by experiment. The book presents two main scientific contributions: the vocabulary and modeling agnostic fusion approach on the purely textual label information, and the combination of three different modalities into one multi-modal embedding space for a more human-like notion of similarity. The book will be of interest to all those faced with the problem of processing data from multiple web-based sources.

Multi-modal Data Fusion Based on Embeddings


Multi-modal Data Fusion Based on Embeddings

Author: Steffen Thoma

language: en

Publisher:

Release Date: 2018


DOWNLOAD





Multimodal Data Fusion for Bioinformatics Artificial Intelligence


Multimodal Data Fusion for Bioinformatics Artificial Intelligence

Author: Umesh Kumar Lilhore

language: en

Publisher: John Wiley & Sons

Release Date: 2025-01-14


DOWNLOAD





Multimodal Data Fusion for Bioinformatics Artificial Intelligence is a must-have for anyone interested in the intersection of AI and bioinformatics, as it delves into innovative data fusion methods and their applications in ‘omics’ research while addressing the ethical implications and future developments shaping the field today. Multimodal Data Fusion for Bioinformatics Artificial Intelligence is an indispensable resource for those exploring how cutting-edge data fusion methods interact with the rapidly developing field of bioinformatics. Beginning with the basics of integrating different data types, this book delves into the use of AI for processing and understanding complex “omics” data, ranging from genomics to metabolomics. The revolutionary potential of AI techniques in bioinformatics is thoroughly explored, including the use of neural networks, graph-based algorithms, single-cell RNA sequencing, and other cutting-edge topics. The second half of the book focuses on the ethical and practical implications of using AI in bioinformatics. The tangible benefits of these technologies in healthcare and research are highlighted in chapters devoted to precision medicine, drug development, and biomedical literature. The book addresses a wide range of ethical concerns, from data privacy to model interpretability, providing readers with a well-rounded education on the subject. Finally, the book explores forward-looking developments such as quantum computing and augmented reality in bioinformatics AI. This comprehensive resource offers a bird’s-eye view of the intersection of AI, data fusion, and bioinformatics, catering to readers of all experience levels.