Fundamentals Of Deep Learning Theory And Applications


Download Fundamentals Of Deep Learning Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Deep Learning Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals Of Deep Learning: Theory And Applications


Fundamentals Of Deep Learning: Theory And Applications

Author: Dr. Pokkuluri Kiran Sree

language: en

Publisher: Academic Guru Publishing House

Release Date: 2023-03-29


DOWNLOAD





Deep learning, often known as DL, is an approach to machine learning that is increasingly seen as the way of the future. Because of its impressive power of learning high-level abstract characteristics from enormous amounts of data, DL garners a lot of interest and also has a lot of success in pattern recognition, computer vision, data mining, and knowledge discovery. This is why DL is so successful in these areas. This book will not only seek to give a basic roadmap or direction to the existing deep learning approaches, but it will also highlight the problems and imagine fresh views that can lead to additional advancements in this subject. One of the most talked about topics in data science today is deep learning. Deep learning is a subfield of machine learning that makes use of sophisticated algorithms that take their cues from the way our own neural networks are wired and operate. The goal of this book is to provide a thorough introduction to deep learning, including an examination of its underlying algorithms, a presentation of its most recent theoretical advancements, a discussion of the most popular deep learning platforms and data sets, and an account of the significant advances made by a wide range of deep learning methodologies in areas such as text, video, image, speech, and audio processing.

Deep Learning: Fundamentals, Theory and Applications


Deep Learning: Fundamentals, Theory and Applications

Author: Kaizhu Huang

language: en

Publisher: Springer

Release Date: 2019-02-15


DOWNLOAD





The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field. This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.

Deep Learning: Fundamentals, Theory and Applications


Deep Learning: Fundamentals, Theory and Applications

Author: Dr. R. Kanagaraj

language: en

Publisher: AG PUBLISHING HOUSE (AGPH Books)

Release Date:


DOWNLOAD





More complex computing approaches have grown in popularity as technology has improved and big data has emerged. Increasing customer demand for better goods, as well as firms trying to better exploit their resources, have been driving this trend. Machine learning is a field that combines statistics, mathematics, and computer science to create and analyze algorithms that improve their own behavior in an iterative fashion by design. Initially, the discipline was committed to the development of artificial intelligence, but owing to the constraints of theory and technology at the time, it became more reasonable to concentrate these algorithms on particular tasks. Deep learning is a sort of machine learning and artificial intelligence (AI) that mimics how people acquire certain types of knowledge. Deep learning is a critical component of data science, which also covers statistics and predictive modeling. Deep learning is particularly advantageous to data scientists who are responsible with gathering, analyzing, and interpreting massive volumes of data; deep learning speeds up and simplifies this process. In this book the concept of deep learning under the machine learning is explained in every aspect. Whether, it's their fundamental concepts or the application of deep learning on daily basis.