Multi Agent Optimization


Download Multi Agent Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Agent Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Multi-Agent Based Optimization Method for Combinatorial Optimization Problems


A Multi-Agent Based Optimization Method for Combinatorial Optimization Problems

Author: Inès Sghir

language: en

Publisher:

Release Date: 2016


DOWNLOAD





We elaborate a multi-agent based optimization method for combinatorial optimization problems named MAOM-COP. It combines metaheuristics, multiagent systems and reinforcement learning. Although the existing heuristics contain several techniques to escape local optimum, they do not have an entire vision of the evolution of optimization search. Our main objective consists in using the multi-agent system to create intelligent cooperative methods of search. These methods explore several existing metaheuristics. MAOMCOP is composed of the following agents: the decisionmaker agent, the intensification agents and the diversification agents which are composed of the perturbation agent and the crossover agents. Based on learning techniques, the decision-maker agent decides dynamically which agent to activate between intensification agents and crossover agents. If the intensifications agents are activated, they apply local search algorithms. During their searches, they can exchange information, as they can trigger the perturbation agent. If the crossover agents are activated, they perform recombination operations. We applied MAOMCOP to the following problems: quadratic assignment, graph coloring, winner determination and multidimensional knapsack. MAOM-COP shows competitive performances compared with the approaches of the literature.

Multi-agent Optimization


Multi-agent Optimization

Author: Angelia Nedić

language: en

Publisher: Springer

Release Date: 2018-11-01


DOWNLOAD





This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.

Web, Artificial Intelligence and Network Applications


Web, Artificial Intelligence and Network Applications

Author: Leonard Barolli

language: en

Publisher: Springer Nature

Release Date: 2020-03-30


DOWNLOAD





This proceedings book presents the latest research findings, and theoretical and practical perspectives on innovative methods and development techniques related to the emerging areas of Web computing, intelligent systems and Internet computing. The Web has become an important source of information, and techniques and methodologies that extract quality information are of paramount importance for many Web and Internet applications. Data mining and knowledge discovery play a key role in many of today's major Web applications, such as e-commerce and computer security. Moreover, Web services provide a new platform for enabling service-oriented systems. The emergence of large-scale distributed computing paradigms, such as cloud computing and mobile computing systems, has opened many opportunities for collaboration services, which are at the core of any information system. Artificial intelligence (AI) is an area of computer science that builds intelligent systems and algorithms that work and react like humans. AI techniques and computational intelligence are powerful tools for learning, adaptation, reasoning and planning, and they have the potential to become enabling technologies for future intelligent networks. Research in the field of intelligent systems, robotics, neuroscience, artificial intelligence and cognitive sciences is vital for the future development and innovation of Web and Internet applications. Chapter "An Event-Driven Multi Agent System for Scalable Traffic Optimization" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.