A Multi Agent Based Optimization Method For Combinatorial Optimization Problems


Download A Multi Agent Based Optimization Method For Combinatorial Optimization Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Multi Agent Based Optimization Method For Combinatorial Optimization Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Multi-Agent Based Optimization Method for Combinatorial Optimization Problems


A Multi-Agent Based Optimization Method for Combinatorial Optimization Problems

Author: Inès Sghir

language: en

Publisher:

Release Date: 2016


DOWNLOAD





We elaborate a multi-agent based optimization method for combinatorial optimization problems named MAOM-COP. It combines metaheuristics, multiagent systems and reinforcement learning. Although the existing heuristics contain several techniques to escape local optimum, they do not have an entire vision of the evolution of optimization search. Our main objective consists in using the multi-agent system to create intelligent cooperative methods of search. These methods explore several existing metaheuristics. MAOMCOP is composed of the following agents: the decisionmaker agent, the intensification agents and the diversification agents which are composed of the perturbation agent and the crossover agents. Based on learning techniques, the decision-maker agent decides dynamically which agent to activate between intensification agents and crossover agents. If the intensifications agents are activated, they apply local search algorithms. During their searches, they can exchange information, as they can trigger the perturbation agent. If the crossover agents are activated, they perform recombination operations. We applied MAOMCOP to the following problems: quadratic assignment, graph coloring, winner determination and multidimensional knapsack. MAOM-COP shows competitive performances compared with the approaches of the literature.

Multi-Agent Based Beam Search for Real-Time Production Scheduling and Control


Multi-Agent Based Beam Search for Real-Time Production Scheduling and Control

Author: Shu Gang Kang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-10-11


DOWNLOAD





The Multi-Agent Based Beam Search (MABBS) method systematically integrates four major requirements of manufacturing production - representation capability, solution quality, computation efficiency, and implementation difficulty - within a unified framework to deal with the many challenges of complex real-world production planning and scheduling problems. Multi-agent Based Beam Search for Real-time Production Scheduling and Control introduces this method, together with its software implementation and industrial applications. This book connects academic research with industrial practice, and develops a practical solution to production planning and scheduling problems. To simplify implementation, a reusable software platform is developed to build the MABBS method into a generic computation engine. This engine is integrated with a script language, called the Embedded Extensible Application Script Language (EXASL), to provide a flexible and straightforward approach to representing complex real-world problems. Adopting an in-depth yet engaging and clear approach, and avoiding confusing or complicated mathematics and formulas, this book presents simple heuristics and a user-friendly software platform for system modelling. The supporting industrial case studies provide key information for students, lecturers, and industry practitioners alike. Multi-agent Based Beam Search for Real-time Production Scheduling and Control offers insights into the complex nature of and a practical total solution to production planning and scheduling, and inspires further research and practice in this promising research area.

Agent-Based Optimization


Agent-Based Optimization

Author: Ireneusz Czarnowski

language: en

Publisher: Springer

Release Date: 2012-12-14


DOWNLOAD





This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.