Modeling And Simulation In Python Reddit

Download Modeling And Simulation In Python Reddit PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling And Simulation In Python Reddit book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fluid Simulation for Computer Graphics

A practical introduction, the second edition of Fluid Simulation for Computer Graphics shows you how to animate fully three-dimensional incompressible flow. It covers all the aspects of fluid simulation, from the mathematics and algorithms to implementation, while making revisions and updates to reflect changes in the field since the first edition. Highlights of the Second Edition New chapters on level sets and vortex methods Emphasizes hybrid particle–voxel methods, now the industry standard approach Covers the latest algorithms and techniques, including: fluid surface reconstruction from particles; accurate, viscous free surfaces for buckling, coiling, and rotating liquids; and enhanced turbulence for smoke animation Adds new discussions on meshing, particles, and vortex methods The book changes the order of topics as they appeared in the first edition to make more sense when reading the first time through. It also contains several updates by distilling author Robert Bridson’s experience in the visual effects industry to highlight the most important points in fluid simulation. It gives you an understanding of how the components of fluid simulation work as well as the tools for creating your own animations.
Python for Mechanical and Aerospace Engineering

The traditional computer science courses for engineering focus on the fundamentals of programming without demonstrating the wide array of practical applications for fields outside of computer science. Thus, the mindset of “Java/Python is for computer science people or programmers, and MATLAB is for engineering” develops. MATLAB tends to dominate the engineering space because it is viewed as a batteries-included software kit that is focused on functional programming. Everything in MATLAB is some sort of array, and it lends itself to engineering integration with its toolkits like Simulink and other add-ins. The downside of MATLAB is that it is proprietary software, the license is expensive to purchase, and it is more limited than Python for doing tasks besides calculating or data capturing. This book is about the Python programming language. Specifically, it is about Python in the context of mechanical and aerospace engineering. Did you know that Python can be used to model a satellite orbiting the Earth? You can find the completed programs and a very helpful 595 page NSA Python tutorial at the book’s GitHub page at https://www.github.com/alexkenan/pymae. Read more about the book, including a sample part of Chapter 5, at https://pymae.github.io
Derivatives Analytics with Python

Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.