Derivatives Analytics With Python


Download Derivatives Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Derivatives Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Python for Finance


Python for Finance

Author: Yves J. Hilpisch

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2018-12-05


DOWNLOAD





The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Listed Volatility and Variance Derivatives


Listed Volatility and Variance Derivatives

Author: Yves Hilpisch

language: en

Publisher: John Wiley & Sons

Release Date: 2016-12-27


DOWNLOAD





Leverage Python for expert-level volatility and variance derivative trading Listed Volatility and Variance Derivatives is a comprehensive treatment of all aspects of these increasingly popular derivatives products, and has the distinction of being both the first to cover European volatility and variance products provided by Eurex and the first to offer Python code for implementing comprehensive quantitative analyses of these financial products. For those who want to get started right away, the book is accompanied by a dedicated Web page and a Github repository that includes all the code from the book for easy replication and use, as well as a hosted version of all the code for immediate execution. Python is fast making inroads into financial modelling and derivatives analytics, and recent developments allow Python to be as fast as pure C++ or C while consisting generally of only 10% of the code lines associated with the compiled languages. This complete guide offers rare insight into the use of Python to undertake complex quantitative analyses of listed volatility and variance derivatives. Learn how to use Python for data and financial analysis, and reproduce stylised facts on volatility and variance markets Gain an understanding of the fundamental techniques of modelling volatility and variance and the model-free replication of variance Familiarise yourself with micro structure elements of the markets for listed volatility and variance derivatives Reproduce all results and graphics with IPython/Jupyter Notebooks and Python codes that accompany the book Listed Volatility and Variance Derivatives is the complete guide to Python-based quantitative analysis of these Eurex derivatives products.

Python for Finance


Python for Finance

Author: Yves Hilpisch

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2014-12-11


DOWNLOAD





The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies