Modeling And Prediction Of Cryptocurrency Prices Using Machine Learning Techniques


Download Modeling And Prediction Of Cryptocurrency Prices Using Machine Learning Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling And Prediction Of Cryptocurrency Prices Using Machine Learning Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON


CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON

Author: Vivian Siahaan

language: en

Publisher: BALIGE PUBLISHING

Release Date: 2023-07-21


DOWNLOAD





In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.

Machine Learning and Modeling Techniques in Financial Data Science


Machine Learning and Modeling Techniques in Financial Data Science

Author: Chen, Haojun

language: en

Publisher: IGI Global

Release Date: 2025-01-22


DOWNLOAD





The integration of machine learning and modeling in finance is transforming how data is analyzed, enabling more accurate predictions, risk assessments, and strategic planning. These advanced techniques empower financial professionals to uncover hidden patterns, automate complex processes, and enhance decision-making in volatile markets. As industries increasingly rely on data-driven insights, the adoption of these tools contributes to greater efficiency, reduced uncertainty, and competitive advantage. This technological shift not only drives innovation within financial sectors but also supports broader economic stability and growth by improving forecasting and mitigating risks. Machine Learning and Modeling Techniques in Financial Data Science provides an updated review and highlights recent theoretical advances and breakthroughs in professional practices within financial data science, exploring the strategic roles of machine learning and modeling techniques across various domains in finance. It offers a comprehensive collection that brings together a wealth of knowledge and experience. Covering topics such as algorithmic trading, financial technology (FinTech), and natural language processing (NLP), this book is an excellent resource for business professionals, leaders, policymakers, researchers, academicians, and more.

Modeling and Prediction of Cryptocurrency Prices Using Machine Learning Techniques


Modeling and Prediction of Cryptocurrency Prices Using Machine Learning Techniques

Author: Alireza Ashayer

language: en

Publisher:

Release Date: 2019


DOWNLOAD





With the introduction of Bitcoin in the year 2008 as the first practical decentralized cryptocurrency, the interest in cryptocurrencies and their underlying technology, Blockchain, has skyrocketed. Their promise of security, anonymity, and lack of a central controlling authority make them ideal for users who value their privacy. Academic research on machine learning, Blockchain technology, and their intersection have increased significantly in recent years. Specifically, one of the interest areas for researchers is the possibility of predicting the future prices of these cryptocurrencies using supervised machine learning techniques. In this thesis, we investigate their ability to make one day ahead price prediction of several popular cryptocurrencies using five widely used time-series prediction models. These models are designed by optimizing model parameters, such as activation functions, before settling on the final models presented in this thesis. Finally, we report the performance of each time-series prediction model measured by its mean squared error and accuracy in price movement direction prediction.