Machine Learning And Modeling Techniques In Financial Data Science

Download Machine Learning And Modeling Techniques In Financial Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Modeling Techniques In Financial Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Machine Learning and Modeling Techniques in Financial Data Science

The integration of machine learning and modeling in finance is transforming how data is analyzed, enabling more accurate predictions, risk assessments, and strategic planning. These advanced techniques empower financial professionals to uncover hidden patterns, automate complex processes, and enhance decision-making in volatile markets. As industries increasingly rely on data-driven insights, the adoption of these tools contributes to greater efficiency, reduced uncertainty, and competitive advantage. This technological shift not only drives innovation within financial sectors but also supports broader economic stability and growth by improving forecasting and mitigating risks. Machine Learning and Modeling Techniques in Financial Data Science provides an updated review and highlights recent theoretical advances and breakthroughs in professional practices within financial data science, exploring the strategic roles of machine learning and modeling techniques across various domains in finance. It offers a comprehensive collection that brings together a wealth of knowledge and experience. Covering topics such as algorithmic trading, financial technology (FinTech), and natural language processing (NLP), this book is an excellent resource for business professionals, leaders, policymakers, researchers, academicians, and more.
Financial Data Analytics

Author: Sinem Derindere Köseoğlu
language: en
Publisher: Springer Nature
Release Date: 2022-04-25
This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.