Minimax Systems And Critical Point Theory

Download Minimax Systems And Critical Point Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Minimax Systems And Critical Point Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Minimax Systems and Critical Point Theory

Author: Martin Schechter
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-05-28
Many problems in science and engineering involve the solution of differential equations or systems. One of most successful methods of solving nonlinear equations is the determination of critical points of corresponding functionals. The study of critical points has grown rapidly in recent years and has led to new applications in other scientific disciplines. This monograph continues this theme and studies new results discovered since the author's preceding book entitled Linking Methods in Critical Point Theory. Written in a clear, sequential exposition, topics include semilinear problems, Fucik spectrum, multidimensional nonlinear wave equations, elliptic systems, and sandwich pairs, among others. With numerous examples and applications, this book explains the fundamental importance of minimax systems and describes how linking methods fit into the framework. Minimax Systems and Critical Point Theory is accessible to graduate students with some background in functional analysis, and the new material makes this book a useful reference for researchers and mathematicians. Review of the author's previous Birkhäuser work, Linking Methods in Critical Point Theory: The applications of the abstract theory are to the existence of (nontrivial) weak solutions of semilinear elliptic boundary value problems for partial differential equations, written in the form Au = f(x, u). . . . The author essentially shows how his methods can be applied whenever the nonlinearity has sublinear growth, and the associated functional may increase at a certain rate in every direction of the underlying space. This provides an elementary approach to such problems. . . . A clear overview of the contents of the book is presented in the first chapter, while bibliographical comments and variant results are described in the last one. -MathSciNet
Critical Point Theory for Lagrangian Systems

Author: Marco Mazzucchelli
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-11-16
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
Critical Point Theory

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.