Microsoft Ml Net Machine Learning For Net Developers Using C Net


Download Microsoft Ml Net Machine Learning For Net Developers Using C Net PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microsoft Ml Net Machine Learning For Net Developers Using C Net book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning Projects for .NET Developers


Machine Learning Projects for .NET Developers

Author: Mathias Brandewinder

language: en

Publisher: Apress

Release Date: 2015-07-14


DOWNLOAD





Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context. In a series of fascinating projects, you’ll learn how to: Build an optical character recognition (OCR) system from scratch Code a spam filter that learns by example Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language) Transform your data into informative features, and use them to make accurate predictions Find patterns in data when you don’t know what you’re looking for Predict numerical values using regression models Implement an intelligent game that learns how to play from experience Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.

Hands-On Machine Learning with ML.NET


Hands-On Machine Learning with ML.NET

Author: Jarred Capellman

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-03-27


DOWNLOAD





Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core Key FeaturesGet well-versed with the ML.NET framework and its components and APIs using practical examplesLearn how to build, train, and evaluate popular machine learning algorithms with ML.NET offeringsExtend your existing machine learning models by integrating with TensorFlow and other librariesBook Description Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code. The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR. By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET. What you will learnUnderstand the framework, components, and APIs of ML.NET using C#Develop regression models using ML.NET for employee attrition and file classificationEvaluate classification models for sentiment prediction of restaurant reviewsWork with clustering models for file type classificationsUse anomaly detection to find anomalies in both network traffic and login historyWork with ASP.NET Core Blazor to create an ML.NET enabled web applicationIntegrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detectionWho this book is for If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.

Introducing Machine Learning


Introducing Machine Learning

Author: Dino Esposito

language: en

Publisher: Microsoft Press

Release Date: 2020-01-31


DOWNLOAD





Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library