Methods Of Multivariate Statistics

Download Methods Of Multivariate Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Multivariate Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods of Multivariate Analysis

Author: Alvin C. Rencher
language: en
Publisher: Wiley-Interscience
Release Date: 2002-03-07
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.
Methods of Multivariate Statistics

Author: Muni S. Srivastava
language: en
Publisher: John Wiley & Sons
Release Date: 2002-07-08
Get up-to-speed on the latest methods of multivariate statistics Multivariate statistical methods provide a powerful tool for analyzing data when observations are taken over a period of time on the same subject. With the advent of fast and efficient computers and the availability of computer packages such as S-plus and SAS, multivariate methods once too complex to tackle are now within reach of most researchers and data analysts. With an emphasis on computing techniques in combination with a full understanding of the mathematics behind the methods, Methods of Multivariate Statistics offers an up-to-date account of multivariate methods. Focusing on the maximum likelihood method for estimation, testing of hypotheses, and "profile analysis," this book offers comprehensive discussions of commonly encountered multivariate data and also covers some practical and important problems lacking in other texts. These include: * Missing at-random observations * "Growth Curve Models" and multivariate one-sided tests applicable in pharmaceutical and medical trials * Bootstrap methods * Principal component method for predicting a multivariate response vector * Outlier detection and handling inference when covariance is singular With clear chapter introductions and numerous problem sets, Methods of Multivariate Statistics meets every statistician's need for a comprehensive investigation of the latest methods in multivariate statistics.
Multivariate Statistical Methods

Author: Bryan F. J. Manly
language: en
Publisher: Chapman & Hall/CRC
Release Date: 2017-09-30
Multivariate Statistical Methods: A Primer provides an introductory overview of multivariate methods without getting too deep into the mathematical details. This fourth edition is a revised and updated version of this bestselling introductory textbook. It retains the clear and concise style of the previous editions of the book and focuses on examples from biological and environmental sciences. The major update with this edition is that R code has been included for each of the analyses described, although in practice any standard statistical package can be used. The original idea with this book still applies. This was to make it as short as possible and enable readers to begin using multivariate methods in an intelligent manner. With updated information on multivariate analyses, new references, and R code included, this book continues to provide a timely introduction to useful tools for multivariate statistical analysis.