Methods Of Multivariate Analysis

Download Methods Of Multivariate Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Multivariate Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods of Multivariate Analysis

Author: Alvin C. Rencher
language: en
Publisher: Wiley-Interscience
Release Date: 2002-03-07
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.
Methods of Multivariate Analysis

Author: Alvin C. Rencher
language: en
Publisher: John Wiley & Sons
Release Date: 2012-08-15
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere." IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. This Third Edition continues to explore the key descriptive and inferential procedures that result from multivariate analysis. Following a brief overview of the topic, the book goes on to review the fundamentals of matrix algebra, sampling from multivariate populations, and the extension of common univariate statistical procedures (including t-tests, analysis of variance, and multiple regression) to analogous multivariate techniques that involve several dependent variables. The latter half of the book describes statistical tools that are uniquely multivariate in nature, including procedures for discriminating among groups, characterizing low-dimensional latent structure in high-dimensional data, identifying clusters in data, and graphically illustrating relationships in low-dimensional space. In addition, the authors explore a wealth of newly added topics, including: Confirmatory Factor Analysis Classification Trees Dynamic Graphics Transformations to Normality Prediction for Multivariate Multiple Regression Kronecker Products and Vec Notation New exercises have been added throughout the book, allowing readers to test their comprehension of the presented material. Detailed appendices provide partial solutions as well as supplemental tables, and an accompanying FTP site features the book's data sets and related SAS® code. Requiring only a basic background in statistics, Methods of Multivariate Analysis, Third Edition is an excellent book for courses on multivariate analysis and applied statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for both statisticians and researchers across a wide variety of disciplines.
Methods of Multivariate Statistics

Author: Muni S. Srivastava
language: en
Publisher: John Wiley & Sons
Release Date: 2002-07-08
Get up-to-speed on the latest methods of multivariate statistics Multivariate statistical methods provide a powerful tool for analyzing data when observations are taken over a period of time on the same subject. With the advent of fast and efficient computers and the availability of computer packages such as S-plus and SAS, multivariate methods once too complex to tackle are now within reach of most researchers and data analysts. With an emphasis on computing techniques in combination with a full understanding of the mathematics behind the methods, Methods of Multivariate Statistics offers an up-to-date account of multivariate methods. Focusing on the maximum likelihood method for estimation, testing of hypotheses, and "profile analysis," this book offers comprehensive discussions of commonly encountered multivariate data and also covers some practical and important problems lacking in other texts. These include: * Missing at-random observations * "Growth Curve Models" and multivariate one-sided tests applicable in pharmaceutical and medical trials * Bootstrap methods * Principal component method for predicting a multivariate response vector * Outlier detection and handling inference when covariance is singular With clear chapter introductions and numerous problem sets, Methods of Multivariate Statistics meets every statistician's need for a comprehensive investigation of the latest methods in multivariate statistics.