Methods For Increasing The Quality And Reliability Of Power System Using Facts Devices

Download Methods For Increasing The Quality And Reliability Of Power System Using Facts Devices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods For Increasing The Quality And Reliability Of Power System Using Facts Devices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods for Increasing the Quality and Reliability of Power System Using FACTS Devices

Author: Dr. Hidaia Mahmood Alassouli
language: en
Publisher: Dr. Hidaia Mahmood Alassouli
Release Date: 2020-06-22
The thesis will try to summarise the major power system problems and the important role of the FACTS devices to enhance the power system quality. Then, it will give a brief description for various FACTS and Active Filters controllers as mentioned on the existing publications. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together.Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. Chapter 1: Gives a general description of most power system problems and the basic techniques used to improve the power system quality. It also gives idea about basic objectives from the FACTS devices.Chapter 2: Offers detailed description for the basic types of FACTS devices and active filters existing in power industry.Chapter 3: Describes various shunt controllers for control of the Static Compensator (STATCOM) and various series controllers for the control of the Static Synchronous Series Compensator (SSSC) and various Unified Power Flow Controllers (UPFC) as covered in most existing papers.Chapter 4: Describes the major control schemes for the shunt active filter as covered by most existing papers.Chapter 5: Describes the major control schemes for the other types of active filters as covered by most existing papers.Chapter 6: Gives description for optimal control design.Chapter 7: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.
Optimal Power Flow Using FACTS Devices

Optimal Power Flow Using FACTS Devices: Soft Computing Techniques develops intelligent algorithms to analyze optimal power flow (OPF) and to enhance the power transfer capability of the transmission line with reduced congestion. By providing elaborate studies on FACTS devices and by using soft computing metaheuristics algorithms such as Firefly, Cuckoo, Flower Pollination, and others., this book enables readers to know about algorithms in real-time power system applications and damping of subsynchronous resonance (SSR) oscillations. Key features of this book include: Offers comprehensive review of FACTS devices and the importance of soft computing techniques for solving OPF. Describes the various problems associated with power system operation and control. Addresses issues of SSR in power systems and proposes soft techniques for SSR analysis in power systems. Demonstrates of the importance of SSR and congestion management using intelligent FACTS devices as part of OPF. Covers power systems’ reliability, quality, cost-effectiveness, effects on customer goodwill, and pollution limits, including the deregulation of markets and different intelligent controllers. Optimal Power Flow Using FACTS Devices: Soft Computing Techniques is aimed at researchers and professionals in the field of power systems.