Measure Valued Branching Processes

Download Measure Valued Branching Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Measure Valued Branching Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Measure-Valued Branching Markov Processes

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein-Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson-Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
An Introduction to Branching Measure-Valued Processes

Author: Evgeniĭ Borisovich Dynkin
language: en
Publisher: American Mathematical Soc.
Release Date: 1994
For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.
Measure-Valued Branching Markov Processes

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.