Maximum Principle And Dynamic Programming Viscosity Solution Approach


Download Maximum Principle And Dynamic Programming Viscosity Solution Approach PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Maximum Principle And Dynamic Programming Viscosity Solution Approach book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Maximum Principle and Dynamic Programming Viscosity Solution Approach


Maximum Principle and Dynamic Programming Viscosity Solution Approach

Author: Bing Sun

language: en

Publisher: Springer Nature

Release Date: 2025-08-02


DOWNLOAD





This book is concerned with optimal control problems of dynamical systems described by partial differential equations (PDEs). The content covers the theory and numerical algorithms, starting with open-loop control and ending with closed-loop control. It includes Pontryagin’s maximum principle and the Bellman dynamic programming principle based on the notion of viscosity solution. The Bellman dynamic programming method can produce the optimal control in feedback form, making it more appealing for online implementations and robustness. The determination of the optimal feedback control law is of fundamental importance in optimal control and can be argued as the Holy Grail of control theory. The book is organized into five chapters. Chapter 1 presents necessary mathematical knowledge. Chapters 2 and 3 (Part 1) focus on the open-loop control while Chapter 4 and 5 (Part 2) focus on the closed-loop control. In this monograph, we incorporate the notion of viscosity solution of PDE with dynamic programming approach. The dynamic programming viscosity solution (DPVS) approach is then used to investigate optimal control problems. In each problem, the optimal feedback law is synthesized and numerically demonstrated. The last chapter presents multiple algorithms for the DPVS approach, including an upwind finite-difference scheme with the convergence proof. It is worth noting that the dynamic systems considered are primarily of technical or biologic origin, which is a highlight of the book. This book is systematic and self-contained. It can serve the expert as a ready reference for control theory of infinite-dimensional systems. These chapters taken together would also make a one-semester course for graduate with first courses in PDE-constrained optimal control.

Stochastic Control Theory


Stochastic Control Theory

Author: Makiko Nisio

language: en

Publisher: Springer

Release Date: 2014-11-27


DOWNLOAD





This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations


Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Author: Martino Bardi

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-05-21


DOWNLOAD





The purpose of the present book is to offer an up-to-date account of the theory of viscosity solutions of first order partial differential equations of Hamilton-Jacobi type and its applications to optimal deterministic control and differential games. The theory of viscosity solutions, initiated in the early 80's by the papers of M.G. Crandall and P.L. Lions [CL81, CL83], M.G. Crandall, L.C. Evans and P.L. Lions [CEL84] and P.L. Lions' influential monograph [L82], provides an - tremely convenient PDE framework for dealing with the lack of smoothness of the value functions arising in dynamic optimization problems. The leading theme of this book is a description of the implementation of the viscosity solutions approach to a number of significant model problems in op- real deterministic control and differential games. We have tried to emphasize the advantages offered by this approach in establishing the well-posedness of the c- responding Hamilton-Jacobi equations and to point out its role (when combined with various techniques from optimal control theory and nonsmooth analysis) in the important issue of feedback synthesis.