Stochastic Control Theory


Download Stochastic Control Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Control Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stochastic Control Theory


Stochastic Control Theory

Author: Makiko Nisio

language: en

Publisher: Springer

Release Date: 2014-11-27


DOWNLOAD





This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Stochastic Control in Insurance


Stochastic Control in Insurance

Author: Hanspeter Schmidli

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-11-20


DOWNLOAD





Yet again, here is a Springer volume that offers readers something completely new. Until now, solved examples of the application of stochastic control to actuarial problems could only be found in journals. Not any more: this is the first book to systematically present these methods in one volume. The author starts with a short introduction to stochastic control techniques, then applies the principles to several problems. These examples show how verification theorems and existence theorems may be proved, and that the non-diffusion case is simpler than the diffusion case. Schmidli’s brilliant text also includes a number of appendices, a vital resource for those in both academic and professional settings.

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE


Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Author: Nizar Touzi

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-09-25


DOWNLOAD





This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​