Matrix And Tensor Factorization Techniques For Recommender Systems


Download Matrix And Tensor Factorization Techniques For Recommender Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matrix And Tensor Factorization Techniques For Recommender Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Matrix and Tensor Factorization Techniques for Recommender Systems


Matrix and Tensor Factorization Techniques for Recommender Systems

Author: Panagiotis Symeonidis

language: en

Publisher:

Release Date: 2016


DOWNLOAD





This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Matrix and Tensor Factorization Techniques for Recommender Systems


Matrix and Tensor Factorization Techniques for Recommender Systems

Author: Panagiotis Symeonidis

language: en

Publisher: Springer

Release Date: 2017-01-29


DOWNLOAD





This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Educational Recommender Systems and Technologies: Practices and Challenges


Educational Recommender Systems and Technologies: Practices and Challenges

Author: Santos, Olga C.

language: en

Publisher: IGI Global

Release Date: 2011-12-31


DOWNLOAD





Recommender systems have shown to be successful in many domains where information overload exists. This success has motivated research on how to deploy recommender systems in educational scenarios to facilitate access to a wide spectrum of information. Tackling open issues in their deployment is gaining importance as lifelong learning becomes a necessity of the current knowledge-based society. Although Educational Recommender Systems (ERS) share the same key objectives as recommenders for e-commerce applications, there are some particularities that should be considered before directly applying existing solutions from those applications. Educational Recommender Systems and Technologies: Practices and Challenges aims to provide a comprehensive review of state-of-the-art practices for ERS, as well as the challenges to achieve their actual deployment. Discussing such topics as the state-of-the-art of ERS, methodologies to develop ERS, and architectures to support the recommendation process, this book covers researchers interested in recommendation strategies for educational scenarios and in evaluating the impact of recommendations in learning, as well as academics and practitioners in the area of technology enhanced learning.