Mathematics Of Particle Wave Mechanical Systems


Download Mathematics Of Particle Wave Mechanical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics Of Particle Wave Mechanical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematics of Particle-Wave Mechanical Systems


Mathematics of Particle-Wave Mechanical Systems

Author: James M. Hill

language: en

Publisher: Springer Nature

Release Date: 2022-11-30


DOWNLOAD





Despite successes of modern physics, the existence of dark energy and matter is indicative that conventional mechanical accounting is lacking. The most basic of all mechanical principles is Newton’s second law, and conventionally, energy is just energy whether particle or wave energy. In this monograph, Louis de Broglie’s idea of simultaneous existence of both particle and associated wave is developed, with a novel proposal to account for mass and energy through a combined particle-wave theory. Newton’s second law of motion is replaced by a fully Lorentz invariant reformulation inclusive of both particles and waves. The model springs from continuum mechanics and forms a natural extension of special relativistic mechanics. It involves the notion of “force in the direction of time” and every particle has both particle and wave energies, arising as characteristics of space and time respectively. Dark matter and energy then emerge as special or privileged states occurring for alignments of spatial forces with the force in the direction of time. Dark matter is essentially a backward wave and dark energy a forward wave, both propagating at the speed of light. The model includes special relativistic mechanics and Schrödinger’s quantum mechanics, and the major achievements of mechanics and quantum physics. Our ideas of particles and waves are not yet properly formulated, and are bound up with the speed of light as an extreme limit and particle-wave demarcation. Sub-luminal particles have an associated superluminal wave, so if sub-luminal waves have an associated superluminal particle, then there emerges the prospect for faster than light travel with all the implications for future humanity. Carefully structured over special relativity and quantum mechanics, Mathematics of Particle-Wave Mechanical Systems is not a completed story, but perhaps the first mechanical model within which such exalted notions might be realistically and soberly examined. If ultimately the distant universe become accessible, this will necessitate thinking differently about particles, waves and the role imposed by the speed of light. The text constitutes a single proposal in that direction and a depository for mathematically related results. It will appeal to researchers and students of mathematical physics, applied mathematics and engineering mechanics.

Mathematics of Physics and Engineering


Mathematics of Physics and Engineering

Author: Edward K. Blum

language: en

Publisher: World Scientific

Release Date: 2006


DOWNLOAD





Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.

The Mathematical Structure of Stable Physical Systems


The Mathematical Structure of Stable Physical Systems

Author: Dr. Martin Concoyle & G.P. Coatmundi

language: en

Publisher: Trafford Publishing

Release Date: 2014


DOWNLOAD





This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.