Mathematical And Computational Modelling Of Covid 19 Transmission

Download Mathematical And Computational Modelling Of Covid 19 Transmission PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical And Computational Modelling Of Covid 19 Transmission book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical and Computational Modelling of Covid-19 Transmission

Infectious diseases are leading threats and are of highest risk to the human population globally. Over the last two years, we saw the transmission of Covid-19. Millions of people died or were forced to live with a disability. Mathematical models are effective tools that enable analysis of relevant information, simulate the related process and evaluate beneficial results. They can help to make rational decisions to lead toward a healthy society. Formulation of mathematical models for a pollution-free environment is also very important for society. To determine the system which can be modelled, we need to formulate the basic context of the model underlying some necessary assumptions. This describes our beliefs in terms of the mathematical language of how the world functions. This book addresses issues during the Covid phase and post-Covid phase. It analyzes transmission, impact of coinfections, and vaccination as a control or to decrease the intensity of infection. It also talks about the violence and unemployment problems occurring during the post-Covid period. This book will help societal stakeholders to resume normality slowly and steadily.
Computational Modelling and Imaging for SARS-CoV-2 and COVID-19

The aim of this book is to present new computational techniques and methodologies for the analysis of the clinical, epidemiological and public health aspects of SARS-CoV-2 and COVID-19 pandemic. The book presents the use of soft computing techniques such as machine learning algorithms for analysis of the epidemiological aspects of the SARS-CoV-2. This book clearly explains novel computational image processing algorithms for the detection of COVID-19 lesions in lung CT and X-ray images. It explores various computational methods for computerized analysis of the SARS-CoV-2 infection including severity assessment. The book provides a detailed description of the algorithms which can potentially aid in mass screening of SARS-CoV-2 infected cases. Finally the book also explains the conventional epidemiological models and machine learning techniques for the prediction of the course of the COVID-19 epidemic. It also provides real life examples through case studies. The book is intended for biomedical engineers, mathematicians, postgraduate students; researchers; medical scientists working on identifying and tracking infectious diseases.
Mathematical Epidemiology

Author: Fred Brauer
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-04-30
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).