Computational Modelling And Imaging For Sars Cov 2 And Covid 19


Download Computational Modelling And Imaging For Sars Cov 2 And Covid 19 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Modelling And Imaging For Sars Cov 2 And Covid 19 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Modelling and Imaging for SARS-CoV-2 and COVID-19


Computational Modelling and Imaging for SARS-CoV-2 and COVID-19

Author: S. Prabha

language: en

Publisher: CRC Press

Release Date: 2021-09-02


DOWNLOAD





The aim of this book is to present new computational techniques and methodologies for the analysis of the clinical, epidemiological and public health aspects of SARS-CoV-2 and COVID-19 pandemic. The book presents the use of soft computing techniques such as machine learning algorithms for analysis of the epidemiological aspects of the SARS-CoV-2. This book clearly explains novel computational image processing algorithms for the detection of COVID-19 lesions in lung CT and X-ray images. It explores various computational methods for computerized analysis of the SARS-CoV-2 infection including severity assessment. The book provides a detailed description of the algorithms which can potentially aid in mass screening of SARS-CoV-2 infected cases. Finally the book also explains the conventional epidemiological models and machine learning techniques for the prediction of the course of the COVID-19 epidemic. It also provides real life examples through case studies. The book is intended for biomedical engineers, mathematicians, postgraduate students; researchers; medical scientists working on identifying and tracking infectious diseases.

Computational Modelling and Imaging for SARS-CoV-2 and COVID-19


Computational Modelling and Imaging for SARS-CoV-2 and COVID-19

Author: S. Prabha

language: en

Publisher: CRC Press

Release Date: 2021-09-02


DOWNLOAD





The aim of this book is to present new computational techniques and methodologies for the analysis of the clinical, epidemiological and public health aspects of SARS-CoV-2 and COVID-19 pandemic. The book presents the use of soft computing techniques such as machine learning algorithms for analysis of the epidemiological aspects of the SARS-CoV-2. This book clearly explains novel computational image processing algorithms for the detection of COVID-19 lesions in lung CT and X-ray images. It explores various computational methods for computerized analysis of the SARS-CoV-2 infection including severity assessment. The book provides a detailed description of the algorithms which can potentially aid in mass screening of SARS-CoV-2 infected cases. Finally the book also explains the conventional epidemiological models and machine learning techniques for the prediction of the course of the COVID-19 epidemic. It also provides real life examples through case studies. The book is intended for biomedical engineers, mathematicians, postgraduate students; researchers; medical scientists working on identifying and tracking infectious diseases.

Computational Modeling and Data Analysis in COVID-19 Research


Computational Modeling and Data Analysis in COVID-19 Research

Author: Chhabi Rani Panigrahi

language: en

Publisher: CRC Press

Release Date: 2021-05-09


DOWNLOAD





This book covers recent research on the COVID-19 pandemic. It includes the analysis, implementation, usage, and proposed ideas and models with architecture to handle the COVID-19 outbreak. Using advanced technologies such as artificial intelligence (AI) and machine learning (ML), techniques for data analysis, this book will be helpful to mitigate exposure and ensure public health. We know prevention is better than cure, so by using several ML techniques, researchers can try to predict the disease in its early stage and develop more effective medications and treatments. Computational technologies in areas like AI, ML, Internet of Things (IoT), and drone technologies underlie a range of applications that can be developed and utilized for this purpose. Because in most cases there is no one solution to stop the spreading of pandemic diseases, and the integration of several tools and tactics are needed. Many successful applications of AI, ML, IoT, and drone technologies already exist, including systems that analyze past data to predict and conclude some useful information for controlling the spread of COVID-19 infections using minimum resources. The AI and ML approach can be helpful to design different models to give a predictive solution for mitigating infection and preventing larger outbreaks. This book: Examines the use of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), and drone technologies as a helpful predictive solution for controlling infection of COVID-19 Covers recent research related to the COVID-19 pandemic and includes the analysis, implementation, usage, and proposed ideas and models with architecture to handle a pandemic outbreak Examines the performance, implementation, architecture, and techniques of different analytical and statistical models related to COVID-19 Includes different case studies on COVID-19 Dr. Chhabi Rani Panigrahi is Assistant Professor in the Department of Computer Science at Rama Devi Women’s University, Bhubaneswar, India. Dr. Bibudhendu Pati is Associate Professor and Head of the Department of Computer Science at Rama Devi Women’s University, Bhubaneswar, India. Dr. Mamata Rath is Assistant Professor in the School of Management (Information Technology) at Birla Global University, Bhubaneswar, India. Prof. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia.