Macroscopic And Large Scale Phenomena Coarse Graining Mean Field Limits And Ergodicity


Download Macroscopic And Large Scale Phenomena Coarse Graining Mean Field Limits And Ergodicity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Macroscopic And Large Scale Phenomena Coarse Graining Mean Field Limits And Ergodicity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity


Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity

Author: Adrian Muntean

language: en

Publisher: Springer

Release Date: 2016-01-28


DOWNLOAD





This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory. Alexander Mielke's contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction. Martin Göll and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.

Mean Field Games


Mean Field Games

Author: Yves Achdou

language: en

Publisher: Springer Nature

Release Date: 2021-01-19


DOWNLOAD





This volume provides an introduction to the theory of Mean Field Games, suggested by J.-M. Lasry and P.-L. Lions in 2006 as a mean-field model for Nash equilibria in the strategic interaction of a large number of agents. Besides giving an accessible presentation of the main features of mean-field game theory, the volume offers an overview of recent developments which explore several important directions: from partial differential equations to stochastic analysis, from the calculus of variations to modeling and aspects related to numerical methods. Arising from the CIME Summer School "Mean Field Games" held in Cetraro in 2019, this book collects together lecture notes prepared by Y. Achdou (with M. Laurière), P. Cardaliaguet, F. Delarue, A. Porretta and F. Santambrogio. These notes will be valuable for researchers and advanced graduate students who wish to approach this theory and explore its connections with several different fields in mathematics.

Crowd Dynamics, Volume 2


Crowd Dynamics, Volume 2

Author: Livio Gibelli

language: en

Publisher: Springer Nature

Release Date: 2020-10-23


DOWNLOAD





This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. After providing a critical analysis of the current state of the field and an overview of the current research perspectives, chapters focus on three main research areas: pedestrian interactions, crowd control, and multiscale modeling. Specific topics covered in this volume include: crowd dynamics through conservation laws recent developments in controlled crowd dynamics mixed traffic modeling insights and applications from crowd psychology Crowd Dynamics, Volume 2 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.