Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn


Download Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Mit Python Und Keras Tensorflow 2 Und Scikit Learn book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn


Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn

Author: Sebastian Raschka / Vahid Mirjalili

language: de

Publisher: MITP-Verlags GmbH & Co. KG

Release Date: 2021-03-03


DOWNLOAD





• Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings • Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib • Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert. Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning. Ein sicherer Umgang mit Python wird vorausgesetzt.

Machine Learning with Python


Machine Learning with Python

Author: Tarkeshwar Barua

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2024-09-03


DOWNLOAD





This book explains how to use the programming language Python to develop machine learning and deep learning tasks. It provides readers with a solid foundation in the fundamentals of machine learning algorithms and techniques. The book covers a wide range of topics, including data preprocessing, supervised and unsupervised learning, model evaluation, and deployment. By leveraging the power of Python, readers will gain the practical skills necessary to build and deploy effective machine learning models, making this book an invaluable resource for anyone interested in exploring the exciting world of artificial intelligence.

Machine Learning with Python


Machine Learning with Python

Author: Amin Zollanvari

language: en

Publisher: Springer Nature

Release Date: 2023-07-11


DOWNLOAD





This book is meant as a textbook for undergraduate and graduate students who are willing to understand essential elements of machine learning from both a theoretical and a practical perspective. The choice of the topics in the book is made based on one criterion: whether the practical utility of a certain method justifies its theoretical elaboration for students with a typical mathematical background in engineering and other quantitative fields. As a result, not only does the book contain practically useful techniques, it also presents them in a mathematical language that is accessible to both graduate and advanced undergraduate students. The textbook covers a range of topics including nearest neighbors, linear models, decision trees, ensemble learning, model evaluation and selection, dimensionality reduction, assembling various learning stages, clustering, and deep learning along with an introduction to fundamental Python packages for data science and machine learning such as NumPy, Pandas, Matplotlib, Scikit-Learn, XGBoost, and Keras with TensorFlow backend. Given the current dominant role of the Python programming language for machine learning, the book complements the theoretical presentation of each technique by its Python implementation. In this regard, two chapters are devoted to cover necessary Python programming skills. This feature makes the book self-sufficient for students with different programming backgrounds and is in sharp contrast with other books in the field that assume readers have prior Python programming experience. As such, the systematic structure of the book, along with the many examples and exercises presented, will help the readers to better grasp the content and be equipped with the practical skills required in day-to-day machine learning applications.