Hands On Graph Neural Networks Using Python


Download Hands On Graph Neural Networks Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Graph Neural Networks Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Graph Neural Networks Using Python


Hands-On Graph Neural Networks Using Python

Author: Maxime Labonne

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-04-14


DOWNLOAD





Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps Purchase of the print or Kindle book includes a free PDF eBook Key Features Implement -of-the-art graph neural architectures in Python Create your own graph datasets from tabular data Build powerful traffic forecasting, recommender systems, and anomaly detection applications Book DescriptionGraph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery. Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you’ll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps. By the end of this book, you’ll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.What you will learn Understand the fundamental concepts of graph neural networks Implement graph neural networks using Python and PyTorch Geometric Classify nodes, graphs, and edges using millions of samples Predict and generate realistic graph topologies Combine heterogeneous sources to improve performance Forecast future events using topological information Apply graph neural networks to solve real-world problems Who this book is for This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you’re new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.

10 Machine Learning Blueprints You Should Know for Cybersecurity


10 Machine Learning Blueprints You Should Know for Cybersecurity

Author: Rajvardhan Oak

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-05-31


DOWNLOAD





Work on 10 practical projects, each with a blueprint for a different machine learning technique, and apply them in the real world to fight against cybercrime Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to frame a cyber security problem as a machine learning problem Examine your model for robustness against adversarial machine learning Build your portfolio, enhance your resume, and ace interviews to become a cybersecurity data scientist Book Description Machine learning in security is harder than other domains because of the changing nature and abilities of adversaries, high stakes, and a lack of ground-truth data. This book will prepare machine learning practitioners to effectively handle tasks in the challenging yet exciting cybersecurity space. The book begins by helping you understand how advanced ML algorithms work and shows you practical examples of how they can be applied to security-specific problems with Python – by using open source datasets or instructing you to create your own. In one exercise, you'll also use GPT 3.5, the secret sauce behind ChatGPT, to generate an artificial dataset of fabricated news. Later, you'll find out how to apply the expert knowledge and human-in-the-loop decision-making that is necessary in the cybersecurity space. This book is designed to address the lack of proper resources available for individuals interested in transitioning into a data scientist role in cybersecurity. It concludes with case studies, interview questions, and blueprints for four projects that you can use to enhance your portfolio. By the end of this book, you'll be able to apply machine learning algorithms to detect malware, fake news, deep fakes, and more, along with implementing privacy-preserving machine learning techniques such as differentially private ML. What you will learn Use GNNs to build feature-rich graphs for bot detection and engineer graph-powered embeddings and features Discover how to apply ML techniques in the cybersecurity domain Apply state-of-the-art algorithms such as transformers and GNNs to solve security-related issues Leverage ML to solve modern security issues such as deep fake detection, machine-generated text identification, and stylometric analysis Apply privacy-preserving ML techniques and use differential privacy to protect user data while training ML models Build your own portfolio with end-to-end ML projects for cybersecurity Who this book is for This book is for machine learning practitioners interested in applying their skills to solve cybersecurity issues. Cybersecurity workers looking to leverage ML methods will also find this book useful. An understanding of the fundamental machine learning concepts and beginner-level knowledge of Python programming are needed to grasp the concepts in this book. Whether you're a beginner or an experienced professional, this book offers a unique and valuable learning experience that'll help you develop the skills needed to protect your network and data against the ever-evolving threat landscape.

Modern Graph Theory Algorithms with Python


Modern Graph Theory Algorithms with Python

Author: Colleen M. Farrelly

language: en

Publisher: Packt Publishing Ltd

Release Date: 2024-06-07


DOWNLOAD





Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features Learn how to wrangle different types of datasets and analytics problems into networks Leverage graph theoretic algorithms to analyze data efficiently Apply the skills you gain to solve a variety of problems through case studies in Python Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWe are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You’ll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you’ll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you’ll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you’ll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.What you will learn Transform different data types, such as spatial data, into network formats Explore common network science tools in Python Discover how geometry impacts spreading processes on networks Implement machine learning algorithms on network data features Build and query graph databases Explore new frontiers in network science such as quantum algorithms Who this book is for If you’re a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations.