Machine Learning And Soft Computing


Download Machine Learning And Soft Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Soft Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Soft Computing in Machine Learning


Soft Computing in Machine Learning

Author: Sang-Yong Rhee

language: en

Publisher: Springer

Release Date: 2014-07-08


DOWNLOAD





As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It consists of 11 contributions that features illumination change detection, generator of electronic educational publications, intelligent call triage system, recognition of rocks at uranium deposits, graphics processing units, mathematical model of hit phenomena, selection and mutation in genetic algorithm, hands and arms motion estimation, application of wavelet network, Kanizsa triangle illusion, and support vector machine regression. Also, it describes how to apply the machine learning for the intelligent systems. This edition is published in original, peer reviewed contributions covering from initial design to final prototypes and verifications.

Learning and Soft Computing


Learning and Soft Computing

Author: Vojislav Kecman

language: en

Publisher: MIT Press

Release Date: 2001


DOWNLOAD





This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

Machine Intelligence and Soft Computing


Machine Intelligence and Soft Computing

Author: Debnath Bhattacharyya

language: en

Publisher: Springer Nature

Release Date: 2021-01-20


DOWNLOAD





This book gathers selected papers presented at the International Conference on Machine Intelligence and Soft Computing (ICMISC 2020), held jointly by Vignan’s Institute of Information Technology, Visakhapatnam, India and VFSTR Deemed to be University, Guntur, AP, India during 03-04 September 2020. Topics covered in the book include the artificial neural networks and fuzzy logic, cloud computing, evolutionary algorithms and computation, machine learning, metaheuristics and swarm intelligence, neuro-fuzzy system, soft computing and decision support systems, soft computing applications in actuarial science, soft computing for database deadlock resolution, soft computing methods in engineering, and support vector machine.