Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations

Download Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Author: Leonid Shaikhet
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-29
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.
Lyapunov Functionals and Stability of Stochastic Difference Equations

Author: Leonid Shaikhet
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-06-02
Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.
Dynamical Systems and Applications

World Scientific series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. For the past twenty five years, there has been an explosion of interest in the study of nonlinear dynamical systems. Mathematical techniques developed during this period have been applied to important nonlinear problems ranging from physics and chemistry to ecology and economics. All these developments have made dynamical systems theory an important and attractive branch of mathematics to scientists in many disciplines. This rich mathematical subject has been partially represented in this collection of 45 papers by some of the leading researchers in the area. This volume contains 45 state-of-art articles on the mathematical theory of dynamical systems by leading researchers. It is hoped that this collection will lead new direction in this field.Contributors: B Abraham-Shrauner, V Afraimovich, N U Ahmed, B Aulbach, E J Avila-Vales, F Battelli, J M Blazquez, L Block, T A Burton, R S Cantrell, C Y Chan, P Collet, R Cushman, M Denker, F N Diacu, Y H Ding, N S A El-Sharif, J E Fornaess, M Frankel, R Galeeva, A Galves, V Gershkovich, M Girardi, L Gotusso, J Graczyk, Y Hino, I Hoveijn, V Hutson, P B Kahn, J Kato, J Keesling, S Keras, V Kolmanovskii, N V Minh, V Mioc, K Mischaikow, M Misiurewicz, J W Mooney, M E Muldoon, S Murakami, M Muraskin, A D Myshkis, F Neuman, J C Newby, Y Nishiura, Z Nitecki, M Ohta, G Osipenko, N Ozalp, M Pollicott, Min Qu, Donal O-Regan, E Romanenko, V Roytburd, L Shaikhet, J Shidawara, N Sibony, W-H Steeb, C Stoica, G Swiatek, T Takaishi, N D Thai Son, R Triggiani, A E Tuma, E H Twizell, M Urbanski; T D Van, A Vanderbauwhede, A Veneziani, G Vickers, X Xiang, T Young, Y Zarmi.